Matemática, perguntado por jucalimacandido, 8 meses atrás

PELO AMOR DE DEUS GENTE EU NÃO ENTENDI NADA ME AJUDEEEEMMMMMMM

Anexos:

Soluções para a tarefa

Respondido por niltonjunior20oss764
0

\mathrm{O\ custo\ semanal\ \acute{e}\ dado\ por}\ C(x)=0.1x^2+400.

\mathrm{A\ venda\ semanal\ \acute{e}\ dada\ por}\ V(x)=-0.12x^2+30x.

\mathbf{a)}

\mathrm{O\ lucro\ semanal\ ser\acute{a}\ dado\ por}\text{:}

\boxed{L(x)=V(x)-C(x)}

\Longrightarrow L(x)=-0.12x^2+30x-(0.1x^2+400)

\Longrightarrow \boxed{L(x)=-0.22x^2+30x-400}\ \blacksquare.

\mathbf{b)}

\mathrm{V\acute{e}rtice}\Longrightarrow \boxed{V(x_v,y_v)=V\bigg(-\dfrac{b}{2a},c-\dfrac{b^2}{4a}\bigg)}

\Longrightarrow x_v=-\dfrac{b}{2a}=\dfrac{30}{2(-0.22)}\Longrightarrow x_v=\dfrac{3000}{44}=68.\overline{18}

\Longrightarrow y_v=c-\dfrac{b^2}{4a}=-400-\dfrac{30^2}{4(-0.22)}\Longrightarrow y_v=\dfrac{6850}{11}=622.\overline{72}

\Longrightarrow \boxed{V\bigg(\dfrac{3000}{44},\dfrac{6850}{11}\bigg)}

\mathrm{Intersec\c{c}\tilde{a}o\ com\ o\ eixo}\ x\Longrightarrow \boxed{L(x)=0}

\Longrightarrow x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}=\dfrac{-30\pm\sqrt{548}}{2(-0.22)}=\dfrac{15\mp\sqrt{137}}{0.22}

\Longrightarrow x\approx 14.98\ \text{ou}\ x\approx 121.4

\Longrightarrow\boxed{(14.98,0)\ \text{e}\ (121.4,0)}

\mathrm{Intersec\c{c}\tilde{a}o\ com\ o\ eixo}\ y\Longrightarrow \boxed{x=0}

\Longrightarrow L(0)=-0.22(0)^2+30(0)-400\Longrightarrow L(0)=-400

\Longrightarrow \boxed{(0,-400)}

\mathbf{c)}

\mathrm{Os\ pontos\ de\ intersec\c{c}\tilde{a}o\ entre}\ L(x)\ \mathrm{e\ o\ eixo}\ x\ \mathrm{representam\ as}\\ \mathrm{situa\c{c}\tilde{o}es\ onde\ o\ lucro\ \acute{e}\ nulo,\ i.e.,\ quando}\ L(x)=0.

\mathbf{d)}

\mathrm{O\ eixo\ de\ simetria\ de\ uma\ fun\c{c}\tilde{a}o\ quadr\acute{a}tica\ \acute{e}\ dado\ por}\ x=x_v.

x=x_v\Longrightarrow x-x_v=0\Longrightarrow x-\dfrac{3000}{44}=0\Longrightarrow\boxed{44x-3000=0}

\mathrm{A\ intersec\c{c}\tilde{a}o\ entre\ a\ par\acute{a}bola\ e\ seu\ eixo\ de\ simetria\ \acute{e}\ o\ v\acute{e}rtice,}\\ \mathrm{que\ demonstra\ o\ valor\ m\acute{a}ximo\ de\ L(x),\ i.e.,\ o\ lucro\ m\acute{a}ximo.}

Anexos:

niltonjunior20oss764: ah, não tinha visto as outras
niltonjunior20oss764: vou fazer
Perguntas interessantes