Matemática, perguntado por Thais11011, 1 ano atrás

para que valores reais de K a função y=(k-1)x2-2x+4 não admite zeros reais?

Soluções para a tarefa

Respondido por kelsomendes
2
A equação está toda esquisita mas acho que entendi.

Para que uma equação do 2º não admita raízes reais, o delta deve ser menor que zero.

\Delta<0\\ \\b^{2} -4.a.c \ \textless \ 0  \\  \\ (-2)^{2}-4.(k-1).4\ \textless \ 0 \\  \\ 4-16k+16\ \textless \ 0 \\  \\ -16k\ \textless \ -20 \\  \\ 16k\ \textgreater \ 20  \\  \\ k> \frac{20}{16}  \\  \\ k> \frac{5}{4}

Thais11011: Obrigado ♥♥
Respondido por georgenasciment
2
Vamos lá:

Δ=b² - 4ac
então:
(-2)² - 4·(k-1)·4 < 0 
4 - 16·(k-1) < 0
4 - 16k + 16 < 0
-16k < - 4 -16
-16k < - 20 (-1)
16k > 20
k > 20/16
k > 5/4

Portanto para os valores reais de k para que a função não admita zeros reais é k maior que 5/4.

Espero ter ajudado.

Thais11011: Obrigado gênio ♥♥♥♥
georgenasciment: Que isso, por nada :)
Perguntas interessantes