Para expor todas as combinações possíveis de valores lógicos de proposições compostas usa-se a tabela-verdade. As proposições compostas, dependendo do resultado na tabela-verdade podem se referir a uma tautologia, a uma contradição ou a uma contingência. Sabendo disso, considere a sentença proposicional ~p ↔ q e assinale a alternativa que forneça o resultado e a que ele se refere, ou seja, se é uma tautologia, uma contradição ou uma contingência: Alternativas:
Soluções para a tarefa
Bom dia!
Bom a questão nos pede de imediato que consideremos a sentença proposicional ~p ↔ q e nela encontremos seu resultado. O primeiro passo então seria resolver essa sentença proposicional, resolvendo a sentença através de uma tabela verdade vamos relacionar p e q e logo após a ~p, que é a penas a inversão do valor, ou seja se era verdadeiro passa a ser falso e se era falso passa a ser verdadeiro, a tabela verdade ficará assim:
q p ¬p
V V F
F V F
V F V
F F V
Após montarmos a tabela verdade resolveremos o "se... somente se" que aparece na proposição, a resolução é simples, se os dois valores de p e q foram iguais, eles são verdadeiros, se forem diferentes são falsos, a resolução fica assim :
¬p ⇔ q
V F F
F F V
V V V
F V F
RESULTADO: Avaliando o resultado final ( F, V,V,F) vemos que o temos é uma CONTINGÊNCIA, pois tem tanto valores verdadeiros quanto falsos no resultado.