Matemática, perguntado por lmattheus33, 11 meses atrás

Para cada uma das funções afins abaixo determine a taxa de variação, o valor inicial, f(-1) e o valor de x que torna a função igual a 0.

A) f(x) = x + 1
B) f(x) = -2x + 4
C) y = 3x + 2

Soluções para a tarefa

Respondido por andre19santos
9

A taxa de variação é dada pelo coeficiente angular (o valor que acompanha o x) e o valor inicial é o valor da função quando x = 0. Temos então:

A) f(x) = x + 1

Taxa de variação: 1

Valor inicial: f(0) = 0 + 1 → f(0) = 1

f(-1) = -1 + 1 = 0

Valor que torna a função igual a zero: 0 = x + 1 → x = -1


B) f(x) = -2x + 4

Taxa de variação: -2

Valor inicial: f(0) = 0 + 4 → f(0) = 4

f(-1) = -2(-1) + 1 = 3

Valor que torna a função igual a zero: 0 = -2x + 4 → 2x = 4 → x = 2


C) f(x) = 3x + 2

Taxa de variação: 3

Valor inicial: f(0) = 0 + 2 → f(0) = 2

f(-1) = 3(-1) + 2 = -1

Valor que torna a função igual a zero: 0 = 3x + 2 → 3x = -2 → x = -2/3

Perguntas interessantes