Para cada número abaixo escreva se possível várias decomposiçoes sendo uma delas contendo somente fatores primos utilize a notação com pontências quando necessário
a.36
b.18
c.50
d.25
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
A decomposição em fatores primos de cada número é:
(a) 36 =
(b) 18 =
(c) 50 =
(d) 2 = 2
Esta questão está relacionada com decomposição numérica. A decomposição numérica consiste em escrever um número como um produto entre fatores primos.
Para efetuar a decomposição de um determinado número, devemos decompor ele em fatores primos. Lembrando que os números primos são aqueles que possuem apenas dois divisores: 1 e eles próprios.
Para fazer a decomposição de um número, devemos começar pelo menor fator primo, que é o número 2. Quando não for possível mais dividir por 2, passamos para o próximo fator primo, que é o 3. E assim, sucessivamente, até que o número se decomponha a 1.
Portanto, a decomposição em fatores primos de cada número é:
Decomposição do número 36:
No produto 2 x 2 x 3 x 3 todos os fatores são primos. Chamamos de fatoração de 36 a decomposição de 36 num produto de fatores primos. !!SAO 2 E OUTO 2 PEQUNINIHO OK!!
O número 18 é um número composto pois, o número 18 é divisível por 1, por ele próprio e pelo menos por 2 and 3. assim, é possivel fatorá-lo, ou seja, podemos realizar a sua decomposição em fatores primos.
A decomposição em fatores primos de 18 em forma de potências é = 2•32.
Os fatores primos de 18 são 2 and 3.
50|2 → 2 é o menor número primo que divide o número 50; 25|5 → 5 é o menor número primo que divide o número 25; 5|5 → 5 é o único número primo que divide 5.
25|5 → 5 é o menor número primo que divide o número 25; 5|5 → 5 é o único número primo que divide 5.