Matemática, perguntado por Dina12, 1 ano atrás

Para cada função, calcule x correspondente ao valor máximo:
a) y = 2x² + 11x - 5

b) y = -2x² + 25x - 150

me ajudeeeeeem!!

Soluções para a tarefa

Respondido por clecassiany
6
Veja, Dina, que o valor máximo (ou mínimo) de uma função é dado pelas coordenadas do vértice (xv; yv). 

Nas suas duas questões são pedidos os valores de "x" que correspondem aos valores máximos das duas funções.

Veja que o "x" do vértice "xv" é dado pela seguinte fórmula:

xv = -b/2a     . (I) 

Bem, como é pedido o valor de "x" que corresponde ao valor máximo de cada uma das funções, então vamos ver qual é: 

a) y = -2x² + 11x - 5 

Note que a função acima tem os seguintes coeficientes: a = -2 (é o coeficiente de x²); b = 11 (é o coeficiente de "x"); c = - 5 (é o coeficiente do termo independente). 
Agora vamos encontrar qual é o valor de "x" que corresponderá ao valor máximo dessa função. Vamos na fórmula do "xv", que está na expressão (I) e que é esta:

xv = -b/2a ---- fazendo as devidas substituições (vide coeficientes acima), temos; 
xv = -11/2*(-2) 
xv = -11/-4 ---- como, na divisão, menos com menos dá mais, então teremos:

xv = 11/4 <--- Esta é a resposta para a questão do item "a".

E se você quiser saber qual é o valor máximo da função, então basta substituir o "x" da função por "11/4" e terá o valor máximo atingido pela função do item "a".


b) y = -2x² + 25x - 150 

Veja que os coeficientes da função acima são: a = -2 (é o coeficiente de x²); b = 25 (é o coeficiente de "x") e c = -150 (é o coeficiente do termo independente). 
Assim, utilizando-se novamente a fórmula do "x" do vértice (xv), que está lá na expressão (I), teremos; 

xv = -b/2a ---- fazendo as devidas substituições, teremos (vide coeficientes acima): 

xv = -25/2*(-2)
xv = -25/-4 ---- como, na divisão, menos com menos dá mais, teremos: 

xv = 25/4 <--- Este é a resposta da questão do item "b". 

E se você quiser saber qual é o valor máximo da função, então basta substituir o "x" da função por "25/4" e terá o valor máximo atingido pela função do item "b".



Dina12: Aah!! Agradeço muito.
Perguntas interessantes