Matemática, perguntado por LoreSwan, 1 ano atrás

Para cada dizima periodica encontre a fração geratriz
1) 0,222...
2) 0,1212...
3) 0,303030...
4) 0,4848...
5) 1,666...
6) 2,333...
7) 0,1222..
8) 0,01222..
9) 2,3636...
10) 1,0555...

Soluções para a tarefa

Respondido por robertocarlos5otivr9
1
1)~~0,222\dots

x=0,222\dots

10x=2,222\dots

10x-x=2,222\dots-0,222\dots \iff 9x=2 \iff \boxed{x=\dfrac{2}{9}}


2)~~0,1212\dots

x=0,1212\dots

100x=12,1212\dots

100x-x=12,1212\dots-0,1212\dots \iff 99x=12 \iff \boxed{x=\dfrac{12}{99}}


3)~~0,303030\dots

x=0,303030\dots

100x=30,303030\dots

100x-x=30,3030\dots-0,3030\dots \iff 99x=30
 
x=\dfrac{30}{99} \iff \boxed{x=\dfrac{10}{33}}


4)~~0,4848\dots

x=0,4848\dots

100x=48,4848\dots

100x-x=48,4848\dots-0,4848\dots \iff 99x=48

 x=\dfrac{48}{99} \iff \boxed{x=\dfrac{16}{33}}


5)~~1,666\dots

x=1,666\dots

10x=16,666\dots

10x-x=16,666\dots-1,666\dots \iff 9x=15 \iff x=\dfrac{15}{9} \iff \boxed{x=\dfrac{5}{3}}


6)~~2,333\dots

x=2,333\dots

10x=23,333\dots

10x-x=23,333\dots-2,333\dots \iff 9x=21 \iff x=\dfrac{21}{9} \iff \boxed{x=\dfrac{7}{3}}


7)~~0,1222\dots

x=0,1222\dots

100x=12,222\dots

10x=1,222\dots

100x-10x=12,222\dots-1,222\dots \iff 90x=11 \iff \boxed{x=\dfrac{11}{90}}

8) 0,01222\dots

1000x=12,222\dots

100x=1,222\dots

1000x-100x=12,222\dots-1,222\dots \iff 900x=11 \iff \boxed{x=\dfrac{11}{900}}


9)~~2,3636\dots

x=2,3636\dots

100x=236,3636\dots

100x-x=236,3636\dots-2,3636\dots \iff 99x=234

x=\dfrac{234}{99} \iff \boxed{x=\dfrac{78}{33}}


10)~~1,0555\dots

x=1,0555\dots

100x=105,555\dots

10x=10,555\dots

100x-10x=105,555\dots-10,555\dots \iff 90x=95
 
x=\dfrac{95}{90} \iff \boxed{x=\dfrac{19}{18}}
Perguntas interessantes