Para a relação R={(1,1),(2,3),(5,1),(7,7)} defina sobre o conjunto A={1,2,3,5,7},
Soluções para a tarefa
Respondido por
5
Exercícios resolvidos:
1 - Sendo f e g duas funções tais que: f(x) = ax + b e g(x) = cx + d . Podemos afirmar que a igualdade gof(x) = fog(x) ocorrerá se e somente se:
a) b(1 - c) = d(1 - a)
b) a(1 - b) = d(1 - c)
c) ab = cd
d) ad = bc
e) a = bc
SOLUÇÃO:
Teremos:
fog(x) = f[g(x)] = f(cx + d) = a(cx + d) + b \ fog(x) = acx + ad + b
gof(x) = g[f(x)] = g(ax + b) = c(ax + b) + d \ gof(x) = cax + cb + d
Como o problema exige que gof = fog, fica:
acx + ad + b = cax + cb + d
Simplificando, vem:
ad + b = cb + d
ad - d = cb - b \ d(a - 1) = b(c - 1), que é equivalente a d(a - 1) = b(c - 1), o que nos leva a concluir que a alternativa correta é a letra A. .
2 - Sendo f e g duas funções tais que fog(x) = 2x + 1 e g(x) = 2 - x então f(x) é:
a) 2 - 2x
b) 3 - 3x
c) 2x - 5
*d) 5 - 2x
e) uma função par.
SOLUÇÃO:
Sendo fog(x) = 2x + 1, temos: f[g(x)] = 2x + 1
Substituindo g(x) pelo seu valor, fica: f(2 - x) = 2x + 1
Fazendo uma mudança de variável, podemos escrever 2 - x = u, sendo u a nova variável. Portanto, x = 2 - u.
Substituindo, fica:
f(u) = 2(2 - u) + 1 \ f(u) = 5 - 2u
Portanto, f(x) = 5 - 2x , o que nos leva à alternativa D.
Agora resolva esta:
Dadas as funções f(x) = 4x + 5 e g(x) = 2x - 5k, ocorrerá gof(x) = fog(x) se e somente se k for igual a:
*a) -1/3
b) 1/3
c) 0
d) 1
e) -1
Perguntas interessantes