os vertices de um triangulo sao a (1,-3), b (3, 5) e c ( 5, 7) determine os pontos medios m, n e p , respectivamente de ab, bc e ca e os baricentros g1 e g2 respectivamente do delta abc e do delta mnp
Soluções para a tarefa
Respondido por
41
A (1,-3), B (3, 5) e C ( 5,7)
Mx = (Ax + Bx)/2 = (1 + 3)/2 = 4/2 =2
My = (Ay + By)/2 = (-3 + 5)/2 = 2/2 =1
M(2, 1)
Nx = (Bx + Cx)/2 = (3 + 5)/2 = 8/2 =4
Ny = (By + Cy)/2 = (5 + 7)/2 = 12/2 =6
N(4, 6)
Px = (Ax + Cx)/2 = (1 + 5)/2 = 6/2 =3
Py = (Ay + Cy)/2 = (-3 + 7)/2 = 4/2 =2
P(3, 2)
g1x = (Ax + Bx + Cx)/3 = (1 + 3 + 5)/3 = 9/3 =3
g1y = (Ay + By + Cy)/3 = (- 3 + 5 + 7)/3 = 9/3 =3
g1(3, 3)
g2x = (Mx + Nx + Px)/3 = (2 + 4 + 3)/3 = 9/3 =3
g2y = (My + Ny + Py)/3 = (1 +6 + 2)/3 = 9/3 =3
g2(3, 3)
Mx = (Ax + Bx)/2 = (1 + 3)/2 = 4/2 =2
My = (Ay + By)/2 = (-3 + 5)/2 = 2/2 =1
M(2, 1)
Nx = (Bx + Cx)/2 = (3 + 5)/2 = 8/2 =4
Ny = (By + Cy)/2 = (5 + 7)/2 = 12/2 =6
N(4, 6)
Px = (Ax + Cx)/2 = (1 + 5)/2 = 6/2 =3
Py = (Ay + Cy)/2 = (-3 + 7)/2 = 4/2 =2
P(3, 2)
g1x = (Ax + Bx + Cx)/3 = (1 + 3 + 5)/3 = 9/3 =3
g1y = (Ay + By + Cy)/3 = (- 3 + 5 + 7)/3 = 9/3 =3
g1(3, 3)
g2x = (Mx + Nx + Px)/3 = (2 + 4 + 3)/3 = 9/3 =3
g2y = (My + Ny + Py)/3 = (1 +6 + 2)/3 = 9/3 =3
g2(3, 3)
Perguntas interessantes