Os sistemas no método da substituição 5x-5y=5
X.y =2
Soluções para a tarefa
Respondido por
0
Resposta:
x' = -1 e y' = -2
e/ou
x'' = 2 e y'' = 1
Explicação passo a passo:
5x - 5y = 5
xy = 2
5x - 5y = 5
5.(x - y) = 5
x - y = 5/5
x - y = 1
x = y + 1
xy = 2
(y + 1)y = 2
y.y + 1.y = 2
y² + y = 2
y² + y - 2 = 0
Para ay² + by + c = 0:
y = (-b ± √(b² - 4ac)) / (2a)
y = (-1 ± √(1² - 4.1.(-2))) / (2.1)
y = (-1 ± √(1 - 4.(-2))) / 2
y = (-1 ± √(1 + 8)) / 2
y = (-1 ± √9) / 2
y = (-1 ± √3²) / 2
y = (-1 ± 3) / 2
y' = (-1 - 3) / 2
y' = -(1 + 3) / 2
y' = -4 / 2
y' = -2
y'' = (-1 + 3) / 2
y'' = 2/2
y'' = 1
x'y' = 2
-2x' = 2
x' = 2/-2
x' = -1
x''y'' = 2
1.x'' = 2
x'' = 2
Prova Real:
Para x' = -1 e y' = -2:
5x - 5y = 5
(5.-1) - (5.-2) = 5
-5 - (-10) = 5
-5 + 10 = 5
5 = 5
xy = 2
-1.-2 = 2
2 = 2
Para x'' = 2 e y'' = 1:
5x - 5y = 5
5.2 - 5.1 = 5
10 - 5 = 5
5 = 5
xy = 2
2.1 = 2
2 = 2
Perguntas interessantes
Português,
5 meses atrás
Inglês,
5 meses atrás
Direito,
5 meses atrás
Ed. Física,
6 meses atrás
Matemática,
6 meses atrás
História,
11 meses atrás
Artes,
11 meses atrás