Matemática, perguntado por thiagoguedesp20, 11 meses atrás

Os ângulos ao lado pertecem ao primeiro quadrante do ciclo trigonométrico. Um ângulo que se encontra no intervalo]3pi/2, 2pi[ pertence a que quadrante e tem os sinais do seno e cosseno, respetivamente:

Anexos:

Soluções para a tarefa

Respondido por marcos4829
30

Olá, boa tarde ◉‿◉.

O ângulo que se encontra no intervalo de 3π/2 a 2π, faz parte do quarto quadrante, pois:

 \begin{cases}  \frac{3\pi}{2}  =  \frac{3.180}{2}  =  \frac{540}{2}  = 270 {}^{ \circ}   \\  \\ 2\pi = 2.180 = 360 {}^{ \circ} \end{cases}

O seno no quarto quadrante é negativo, pois o seno representa o eixo y, e tal eixo encontra-se na parte negativa do eixo "y".

Seno → 4° quadrante → negativo.

O cosseno no quarto quadrante é positivo, pois o cosseno representa o eixo "x" e tal eixo encontra-se na parte positiva do eixo "x".

Cosseno → 4° quadrante → positivo.

Espero ter ajudado

Bons estudos ♥️

Anexos:

Ma519: Obg vc é um gênio
soares200325: qual é a alternativa correta ?
karolzaxs: Obrigada gênio
Respondido por BABI1345
6

Resposta:(A) Quarto quadrante, seno é negativo e cosseno é positivo.

Explicação passo-a-passo:

Perguntas interessantes