Os alunos da disciplina de matemática, do 9° ano de uma escola particular, realizam três avaliações por semestre com os pesos de 50%, 20%, e 30%, respectivamente. No final do semestre, precisam obter uma média nas três avaliações de, no mínimo, 7,0 pontos para serem aprovados. Um estudante dessa disciplina obteve os seguintes pontos nas três primeiras avaliações: 5,0 e 8,0, respectivamente.
O mínimo de pontos que esse estudante precisa obter na terceira avaliação para ser aprovado é:
a)9,0
b)9,5.
c)7,5
d)8,5
Soluções para a tarefa
Respondido por
1
Resposta: d)8,5
Explicação passo-a-passo:
Nos três bimestres ele tem que obter uma média no mínimo 7,0. Por conta disso, multiplicamos a média pela quantidade de bimestres- 7.3=21.
Para ele ser aprovado ele tem que possuir ao total, no mínimo, 21 pontos na média.
No primeiro bimestre ele obteve 5,0 e no segundo obteve 8,0. Somando os dois(5+8), ele possui 13 pontos na média, mas para obter a aprovação ele tem q ter no mínimo 21 pontos, como citado anteriormente. Por isso pegamos o valor mínimo da aprovação menos o que ele já possui- 21-13= 8.
Então, para ser aprovado, ele tem que tirar no mínimo 8,0 no terceiro bimestre.
Perguntas interessantes
História,
8 meses atrás
Matemática,
8 meses atrás
Matemática,
8 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Filosofia,
1 ano atrás