Matemática, perguntado por felipesoares21, 1 ano atrás

Ortogonaliza a base V= {v1=(-1,1,0), v2=(2,1,1), v3=(1,1,1)}, usando o processo de Gram-Schmidt

Soluções para a tarefa

Respondido por carlosmath
1
seja u_1=(-1,1,0) então 

u_2=v_2-\dfrac{\langle v_2,u_1\rangle}{\langle u_1,u_1\rangle}\cdot u_1\\ \\
u_2=(2,1,1)-\dfrac{-1}{2}(-1,1,0)\\ \\
u_2=\left(\dfrac{3}{2},\dfrac{3}{2},1\right)\\ \\ \\
u_3=v_3-\dfrac{\langle v_3,u_1\rangle}{\langle u_1,u_1\rangle}\cdot u_1-\dfrac{\langle v_3,u_2\rangle}{\langle u_2,u_2\rangle}\cdot u_2\\ \\ \\
u_3=(1,1,1)-0-\dfrac{4}{\frac{11}{2}}\left(\dfrac{3}{2},\dfrac{3}{2},1\right)


u_3=(1,1,1)-\left(\dfrac{12}{11},\dfrac{12}{11},\dfrac{8}{11}\right)\\ \\ \\
u_3=\left(-\dfrac{1}{11},-\dfrac{1}{11},\dfrac{3}{11}\right)\\ \\ \\

Por tanto uma base normal é

R=\left\{(-1,1,0),\left(\dfrac{3}{2},\dfrac{3}{2},1\right),\left(-\dfrac{1}{11},-\dfrac{1}{11},\dfrac{3}{11}\right)\right\}\\ \\ \\
\text{e a base ortonormal \'e: }\\ \\ \\
R=\left\{\left(-\dfrac{1}{\sqrt2},\dfrac{1}{\sqrt2},0\right),\left(\dfrac{3}{\sqrt{22}},\dfrac{3}{\sqrt{22}},\dfrac{2}{\sqrt{22}}\right),\left(-\dfrac{1}{\sqrt{11}},-\dfrac{1}{\sqrt{11}},\dfrac{3}{\sqrt{11}}\right)\right\}
Perguntas interessantes