onde e quando se originou a algebra
quais as utilidades da algebra ,ou seja, para que serve
Soluções para a tarefa
Respondido por
3
Minha opinião
Uma tradução literal do título completo do livro é a "ciência da restauração (ou reunião) e redução", mas matematicamente seria melhor "ciência da transposição e cancelamento"- ou, conforme Boher, "a transposição de termos subtraídos para o outro membro da equação" e "o cancelamento de termos semelhantes (iguais) em membros opostos da equação". Assim, dada a equação:
x2 + 5x + 4 = 4 - 2x + 5x3
al-jabr fornece
x2 + 7x + 4 = 4 + 5x3
e al-muqabalah fornece
x2 + 7x = 5x3
Talvez a melhor tradução fosse simplesmente "a ciência das equações".
Ainda que originalmente "álgebra" refira-se a equações, a palavra hoje tem um significado muito mais amplo, e uma definição satisfatória requer um enfoque em duas fases:
(1) Álgebra antiga (elementar) é o estudo das equações e métodos de resolvê-las.
(2) Álgebra moderna (abstrata) é o estudo das estruturas matemáticas tais como grupos, anéis e corpos - para mencionar apenas algumas.
De fato, é conveniente traçar o desenvolvimento da álgebra em termos dessas duas fases, uma vez que a divisão é tanto cronológica como conceitual.
Uma tradução literal do título completo do livro é a "ciência da restauração (ou reunião) e redução", mas matematicamente seria melhor "ciência da transposição e cancelamento"- ou, conforme Boher, "a transposição de termos subtraídos para o outro membro da equação" e "o cancelamento de termos semelhantes (iguais) em membros opostos da equação". Assim, dada a equação:
x2 + 5x + 4 = 4 - 2x + 5x3
al-jabr fornece
x2 + 7x + 4 = 4 + 5x3
e al-muqabalah fornece
x2 + 7x = 5x3
Talvez a melhor tradução fosse simplesmente "a ciência das equações".
Ainda que originalmente "álgebra" refira-se a equações, a palavra hoje tem um significado muito mais amplo, e uma definição satisfatória requer um enfoque em duas fases:
(1) Álgebra antiga (elementar) é o estudo das equações e métodos de resolvê-las.
(2) Álgebra moderna (abstrata) é o estudo das estruturas matemáticas tais como grupos, anéis e corpos - para mencionar apenas algumas.
De fato, é conveniente traçar o desenvolvimento da álgebra em termos dessas duas fases, uma vez que a divisão é tanto cronológica como conceitual.
kakaenic:
obrigado juliasoares2
Respondido por
0
Resposta:
Por volta dos séculos IX e VIII A.C., a matemática engatinhava na Babilônia. Não pare agora... Tem mais depois da publicidade ;) Os babilônios e os egípcios já tinham uma álgebra e uma geometria, mas somente o que bastasse para as suas necessidades práticas, e não de uma ciência organizada.
espero ter ajudado ;)
Perguntas interessantes
Português,
9 meses atrás
Geografia,
9 meses atrás
História,
9 meses atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás