Matemática, perguntado por caitorj2013p7dybb, 1 ano atrás

Olha a imagem,me ajudem por favor!

Anexos:

Donesio: O que o exercício está pedindo?
caitorj2013p7dybb: lê.
aj2001: Provavelmente o exercício está com informações incompletas pois ele não possui nenhuma pergunta, somente a descrição da peça!
caitorj2013p7dybb: Pelo oque eu li...tem que descobrir o suporte vertical e um apoio horizontal.
Donesio: Não, não tem que descobrir suporte nem apoio, e outra, que bacana né Caitorj2013p7dybb, você pede ajuda e responde - "lê", que bacana.... Espero que alguém o ajude, pois não me esforçarei para ajudar.... Bons estudos.
caitorj2013p7dybb: Grato.

Soluções para a tarefa

Respondido por pedrotwilightsky
1

 \sin(30)  =  \frac{x + 4}{24}  \\  \frac{1}{2}  =  \frac{x + 4}{24}  \\  \\ (x + 4) \times 2 = 24 \\ x + 4 =  \frac{24}{2}  \\ x + 4 = 12 \\ x = 8 \: cm.


O tamanha do suporte é Igual a: x + 3 = 8 + 3 = 11 cm.
Anexos:

caitorj2013p7dybb: Gratificado, ajudou muito! :-)
Respondido por ronaldocza1
1

Resposta:


Explicação passo-a-passo:

Para achar o suporte vertical precisamos usar a lei dos senos.

\frac{x}{sen 30} = \frac{24}{sen 90}

\frac{x}{0,5} = \frac{24}{1} (agora e meio pelos extremos)

x = 24 . 0,5

x = 12 cm  


suporte = 12 - raio do circulo de cima + raio do circulo de baixo

suporte = 12 - 4 + 3

suporte = 11 cm

________________________________________________________

O apoio horizontal seria a distancia horizontal do triangulo mais os raios dos dois círculos.

Para achar distancia horizontal do triangulo faremos Pitágoras.

a² = b² + c²

24² = 12² + c²

c² = 24² - 12²

c² = 576 - 144

c² = 432

c = \sqrt{351}

c = 20,78 ≈ 21 cm


Apoio = 21 + raio do circulo de cima + raio do circulo de baixo

Apoio = 21 + 4 + 3

Apoio = 28 cm


Mas não a figura parece um pouco imprecisa, mas espero ter te ajudado.

Anexos:

caitorj2013p7dybb: Gratificado, ajudou bastante!
Perguntas interessantes