olá colegas, me ajude neste .Calcule a derivada da função : y = ( x ² + 2 x ) ²
Soluções para a tarefa
Respondido por
0
Para derivar y em relação a x, temos que ter em mente a regra da cadeia:
![f(x)=h(g(x))\Longrightarrow f'(x)=h'(g(x))\cdot g'(x) f(x)=h(g(x))\Longrightarrow f'(x)=h'(g(x))\cdot g'(x)](https://tex.z-dn.net/?f=f%28x%29%3Dh%28g%28x%29%29%5CLongrightarrow+f%27%28x%29%3Dh%27%28g%28x%29%29%5Ccdot+g%27%28x%29)
Dessa maneira:
![y=(x^2+2x)^2\\\\
y'=2(x^2+2x)^{2-1}\cdot(x^2+2x)'\\\\
y'=2(x^2+2x)^1\cdot(2x+2)\\\\
y'=2(x^2+2x)\cdot(2x+2)\\\\
y'=(2x^2+4x)\cdot(2x+2)\\\\
\boxed{y'=4x^3+12x^2+8x} y=(x^2+2x)^2\\\\
y'=2(x^2+2x)^{2-1}\cdot(x^2+2x)'\\\\
y'=2(x^2+2x)^1\cdot(2x+2)\\\\
y'=2(x^2+2x)\cdot(2x+2)\\\\
y'=(2x^2+4x)\cdot(2x+2)\\\\
\boxed{y'=4x^3+12x^2+8x}](https://tex.z-dn.net/?f=y%3D%28x%5E2%2B2x%29%5E2%5C%5C%5C%5C%0Ay%27%3D2%28x%5E2%2B2x%29%5E%7B2-1%7D%5Ccdot%28x%5E2%2B2x%29%27%5C%5C%5C%5C%0Ay%27%3D2%28x%5E2%2B2x%29%5E1%5Ccdot%282x%2B2%29%5C%5C%5C%5C%0Ay%27%3D2%28x%5E2%2B2x%29%5Ccdot%282x%2B2%29%5C%5C%5C%5C%0Ay%27%3D%282x%5E2%2B4x%29%5Ccdot%282x%2B2%29%5C%5C%5C%5C%0A%5Cboxed%7By%27%3D4x%5E3%2B12x%5E2%2B8x%7D)
Dessa maneira:
Perguntas interessantes