Matemática, perguntado por mirelysouza, 1 ano atrás

Oito clientes de um banco , dos quais 3 são mulheres , estão na fila unica do caixa . De quantas maneiras as pessoas dessa fila podem se posicionar de modo que as mulheres fiquem juntas ?


mirelysouza: fica 124 ou 24 ?
AntoniLAD: essa questão é princípio de contagem,e no caso do 124 é arranjo simples.
mirelysouza: então será 8.3=24 maneiras ?

Soluções para a tarefa

Respondido por GregorSamsa
28

Resposta: 4.320 maneiras diferentes.

Explicação passo-a-passo:

Para responder essa questão devemos usar do conceito de permutação simples, onde \mathtt{P_n=n!} . A permutação consiste no ordenamento das posições de determinados itens, valores ou pessoas (como nesse caso).

O ponto da chave da questão está em como os clientes podem ser ordenados. Considere "H" como "Homem" e "M" como "Mulher" e veja a seguir as possíveis posições.

MMMHHHHH

HMMMHHHH

HHMMMHHH

HHHMMMHH

HHHHMMMH

HHHHHMMM

A quantidade de posições também pode ser adquirida pela permutação da quantidade de mulheres. \mathtt{P_3=3!=3\times2\times1=6}

As mulheres podem ficar juntas de 6 formas diferentes. Considerando isso, devemos multiplicar por 6 as permutações da quantidade de mulheres e homens. Veja:

\mathtt{P=6\times(P_H\times P_M)}\\\\ \mathtt{P=6\times(P_5\times P_3)}\\\\ \mathtt{P=6\times(5!\times3!)}\\\\ \mathtt{P=6\times(5\times4\times3\times2\times1\times3\times2\times1)}\\\\ \mathtt{P=6\times(720)}\\\\ \mathtt{P=4.320}

As pessoas podem se posicionar de 4.320 maneiras diferentes para que as mulheres fiquem juntas.

Perguntas interessantes