Matemática, perguntado por 25022003, 11 meses atrás

obter o 3 terma de uma PA em que o 1 termo é 8, e o último é 38 e o número de termos é igual a razão​

Soluções para a tarefa

Respondido por jbsenajr
2

Resposta:

a3=20

Explicação passo-a-passo:

a1=8

an=38

n=r

an=a1+(n-1).r

38=8+(n-1).n

n²-n+8-38=0

n²-n-30=0

Resolvendo a equação teremos:

n = 6

ou

n = -5 (não serve, pois o número de termos deve ser positivo)

Portanto n=6 e r=6

a3=8+(3-1).6

a3=8+2.6

a3=8+12

a3=20

Respondido por ewerton197775p7gwlb
1

resolução!

an = a1 + ( n - 1 ) r

38 = 8 + ( r - 1 ) r

38 = 8 + r^2 - r

38 - 8 = r^2 - r

30 = r^2 - r

r^2 - r - 30 = 0

= (-1)^2 - 4 * 1 * (-30)

= 1 + 120

= 121

=121

= 11

r ' = 1 + 11/2

r ' = 12/2

r ' = 6

r " = 1 - 11/2

r " = - 10/2

r " = - 5

a3 = a1 + 2r

a3 = 8 + 2 * 6

a3 = 8 + 12

a3 = 20

PA = { 8 , 14 , 20 , 26 , 32 , 38 }

Perguntas interessantes