Obtenha o módulo e o argumento do número complexo z = - 1 - i
Soluções para a tarefa
Respondido por
11
Um número complexo pode ser representado num sistemas de coordenadas cartesianas, onde a parte real corresponde ao eixo x (eixo real) e a parte imaginária corresponde ao eixo y (eixo imaginário).
Desta forma, um número complexo z = a + bi forma um triângulo retângulo de catetos a e b, e hipotenusa igual ao módulo de z (|z|).
O argumento do número z é o arco formado entre o eixo horizontal positivo e o módulo de z.
Desta forma, temos:
Como a = -1 e b = -1:
Pela relação trigonométrica , temos:
O ângulo cujo cosseno é igual a -√2/2 é 135º. Como z está no terceiro quadrante, temos que subtrair este ângulo de 360º. Então o argumento de z é 225º.
Portanto:
|z| = √2
arg(z) = 225º
Desta forma, um número complexo z = a + bi forma um triângulo retângulo de catetos a e b, e hipotenusa igual ao módulo de z (|z|).
O argumento do número z é o arco formado entre o eixo horizontal positivo e o módulo de z.
Desta forma, temos:
Como a = -1 e b = -1:
Pela relação trigonométrica , temos:
O ângulo cujo cosseno é igual a -√2/2 é 135º. Como z está no terceiro quadrante, temos que subtrair este ângulo de 360º. Então o argumento de z é 225º.
Portanto:
|z| = √2
arg(z) = 225º
Perguntas interessantes
Português,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
10 meses atrás
História,
1 ano atrás
Filosofia,
1 ano atrás
Espanhol,
1 ano atrás
ENEM,
1 ano atrás