Matemática, perguntado por PlayerFuturista, 1 ano atrás

obtenha o e o 100º termo da p.a (2,5,8,11)
agradeço quem ajudar

Soluções para a tarefa

Respondido por Usuário anônimo
6
Boa noite!

Solução!

Dados do problema.


r=a2-a1
r=5-2


r=3
a1=2
n=100
a100=?

Formula da P.A

a100=a1+99r\\\\\
a100=2+99(3)\\\\\
a100=2+297\\\\\\
a100=299

\boxed{Resposta:a100=299}

Boa noite!
Bons estudos!

Respondido por viniciusszillo
0

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da sequência (2, 5, 8, 11,...), tem-se:

a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;

b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:2

c)centésimo termo (a₁₀₀): ?

d)número de termos (n): 100

  • Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 100ª), equivalente ao número de termos.

e)Embora não se saiba o valor do centésimo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem, afastam-se do zero, para a direita dele, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒

r = 5 - 2 ⇒

r = 3       (Razão positiva, conforme prenunciado no item e acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o centésimo termo:

an = a₁ + (n - 1) . r ⇒

a₁₀₀ = a₁ + (n - 1) . (r) ⇒

a₁₀₀ = 2 + (100 - 1) . (3) ⇒

a₁₀₀ = 2 + (99) . (3) ⇒         (Veja a Observação 2.)

a₁₀₀ = 2 + 297 ⇒

a₁₀₀ = 299

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).

Resposta: O centésimo termo da P.A.(2, 5, 8, 11,...) é 299.

====================================================

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₁₀₀ = 299 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o centésimo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₁₀₀ = a₁ + (n - 1) . (r) ⇒

299 = a₁ + (100 - 1) . (3) ⇒

299 = a₁ + (99) . (3) ⇒

299 = a₁ + 297 ⇒  

299 - 297 = a₁ ⇒  

2 = a₁ ⇔             (O símbolo ⇔ significa "equivale a".)

a₁ = 2                  (Provado que a₁₀₀ = 299.)

→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/8963393

brainly.com.br/tarefa/6060410

brainly.com.br/tarefa/4769452

brainly.com.br/tarefa/27998574

brainly.com.br/tarefa/1185711

brainly.com.br/tarefa/12967381

brainly.com.br/tarefa/27997302

brainly.com.br/tarefa/27992036

brainly.com.br/tarefa/1948447

Perguntas interessantes