Obtenha a expressão polinomial do 3° grau da função y = f(x) cujo gráfico contem os pontos A(-4,0),B(-2,0),C(4,0) e P(0,32)
Soluções para a tarefa
Respondido por
1
Temos uma função de 3º grau que passa pelos pontos A(– 4, 0), B(–2, 0),
C(4, 0), P(0, 32).
Notamos que esta função tem três raízes, correspondentes aos pontos A, B, C:
![\mathtt{r_1=-4}\\\\
\mathtt{r_2=-2}\\\\ \mathtt{r_3=4} \mathtt{r_1=-4}\\\\
\mathtt{r_2=-2}\\\\ \mathtt{r_3=4}](https://tex.z-dn.net/?f=%5Cmathtt%7Br_1%3D-4%7D%5C%5C%5C%5C+%0A%5Cmathtt%7Br_2%3D-2%7D%5C%5C%5C%5C+%5Cmathtt%7Br_3%3D4%7D)
e como são raízes, temos que
![\mathtt{f(r_1)=f(r_2)=f(r_3)=0}. \mathtt{f(r_1)=f(r_2)=f(r_3)=0}.](https://tex.z-dn.net/?f=%5Cmathtt%7Bf%28r_1%29%3Df%28r_2%29%3Df%28r_3%29%3D0%7D.)
Conhecidas as raízes, a lei que rege a função f é descrita por
![\mathtt{f(x)=a(x-r_1)(x-r_2)(x-r_3)}\\\\ \mathtt{f(x)=a\big(x-(-4)\big)\big(x-(-2)\big)(x-4)}\\\\ \mathtt{f(x)=a(x+4)(x+2)(x-4)}\\\\ \mathtt{f(x)=a\cdot [(x+4)(x+2)]\cdot (x-4)} \mathtt{f(x)=a(x-r_1)(x-r_2)(x-r_3)}\\\\ \mathtt{f(x)=a\big(x-(-4)\big)\big(x-(-2)\big)(x-4)}\\\\ \mathtt{f(x)=a(x+4)(x+2)(x-4)}\\\\ \mathtt{f(x)=a\cdot [(x+4)(x+2)]\cdot (x-4)}](https://tex.z-dn.net/?f=%5Cmathtt%7Bf%28x%29%3Da%28x-r_1%29%28x-r_2%29%28x-r_3%29%7D%5C%5C%5C%5C+%5Cmathtt%7Bf%28x%29%3Da%5Cbig%28x-%28-4%29%5Cbig%29%5Cbig%28x-%28-2%29%5Cbig%29%28x-4%29%7D%5C%5C%5C%5C+%5Cmathtt%7Bf%28x%29%3Da%28x%2B4%29%28x%2B2%29%28x-4%29%7D%5C%5C%5C%5C+%5Cmathtt%7Bf%28x%29%3Da%5Ccdot+%5B%28x%2B4%29%28x%2B2%29%5D%5Ccdot+%28x-4%29%7D)
Aplicando a distributiva nos fatores dos colchetes,
![\mathtt{f(x)=a\cdot [(x+4)\cdot x+(x+4)\cdot 2]\cdot (x-4)}\\\\ \mathtt{f(x)=a\cdot (x^2+4x+2x+8)\cdot (x-4)}\\\\ \mathtt{f(x)=a\cdot (x^2+6x+8)\cdot (x-4)} \mathtt{f(x)=a\cdot [(x+4)\cdot x+(x+4)\cdot 2]\cdot (x-4)}\\\\ \mathtt{f(x)=a\cdot (x^2+4x+2x+8)\cdot (x-4)}\\\\ \mathtt{f(x)=a\cdot (x^2+6x+8)\cdot (x-4)}](https://tex.z-dn.net/?f=%5Cmathtt%7Bf%28x%29%3Da%5Ccdot+%5B%28x%2B4%29%5Ccdot+x%2B%28x%2B4%29%5Ccdot+2%5D%5Ccdot+%28x-4%29%7D%5C%5C%5C%5C+%5Cmathtt%7Bf%28x%29%3Da%5Ccdot+%28x%5E2%2B4x%2B2x%2B8%29%5Ccdot+%28x-4%29%7D%5C%5C%5C%5C+%5Cmathtt%7Bf%28x%29%3Da%5Ccdot+%28x%5E2%2B6x%2B8%29%5Ccdot+%28x-4%29%7D)
Aplicando a distributiva novamente,
![\mathtt{f(x)=a\cdot [(x^2+6x+8)\cdot x-(x^2+6x+8)\cdot 4]}\\\\ \mathtt{f(x)=a\cdot [x^3+6x^2+8x-4x^2-24x-32]}\\\\ \mathtt{f(x)=a\cdot (x^3+6x^2-4x^2+8x-24x-32)}\\\\ \mathtt{f(x)=a\cdot (x^3+2x^2-16x-32)} \mathtt{f(x)=a\cdot [(x^2+6x+8)\cdot x-(x^2+6x+8)\cdot 4]}\\\\ \mathtt{f(x)=a\cdot [x^3+6x^2+8x-4x^2-24x-32]}\\\\ \mathtt{f(x)=a\cdot (x^3+6x^2-4x^2+8x-24x-32)}\\\\ \mathtt{f(x)=a\cdot (x^3+2x^2-16x-32)}](https://tex.z-dn.net/?f=%5Cmathtt%7Bf%28x%29%3Da%5Ccdot+%5B%28x%5E2%2B6x%2B8%29%5Ccdot+x-%28x%5E2%2B6x%2B8%29%5Ccdot+4%5D%7D%5C%5C%5C%5C+%5Cmathtt%7Bf%28x%29%3Da%5Ccdot+%5Bx%5E3%2B6x%5E2%2B8x-4x%5E2-24x-32%5D%7D%5C%5C%5C%5C+%5Cmathtt%7Bf%28x%29%3Da%5Ccdot+%28x%5E3%2B6x%5E2-4x%5E2%2B8x-24x-32%29%7D%5C%5C%5C%5C+%5Cmathtt%7Bf%28x%29%3Da%5Ccdot+%28x%5E3%2B2x%5E2-16x-32%29%7D)
sendo
uma
constante a se determinar, usando as coordenadas do ponto
P:
![\mathtt{f(0)=32}\\\\ \mathtt{a(0^3+2\cdot 0^2-16\cdot
0-32)=32}\\\\ \mathtt{a\cdot (-32)=32}\\\\ \mathtt{a=-1} \mathtt{f(0)=32}\\\\ \mathtt{a(0^3+2\cdot 0^2-16\cdot
0-32)=32}\\\\ \mathtt{a\cdot (-32)=32}\\\\ \mathtt{a=-1}](https://tex.z-dn.net/?f=%5Cmathtt%7Bf%280%29%3D32%7D%5C%5C%5C%5C+%5Cmathtt%7Ba%280%5E3%2B2%5Ccdot+0%5E2-16%5Ccdot+%0A0-32%29%3D32%7D%5C%5C%5C%5C+%5Cmathtt%7Ba%5Ccdot+%28-32%29%3D32%7D%5C%5C%5C%5C+%5Cmathtt%7Ba%3D-1%7D)
Então, f é dada por
![\mathtt{f(x)=-1\cdot(x^3+2x^2-16x-32)}\\\\ \boxed{\begin{array}{c}\mathtt{f(x)=-x^3-2x^2+16x+32}\end{array}} \mathtt{f(x)=-1\cdot(x^3+2x^2-16x-32)}\\\\ \boxed{\begin{array}{c}\mathtt{f(x)=-x^3-2x^2+16x+32}\end{array}}](https://tex.z-dn.net/?f=%5Cmathtt%7Bf%28x%29%3D-1%5Ccdot%28x%5E3%2B2x%5E2-16x-32%29%7D%5C%5C%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cmathtt%7Bf%28x%29%3D-x%5E3-2x%5E2%2B16x%2B32%7D%5Cend%7Barray%7D%7D)
Dúvidas? Comente.
Bons estudos! :-)
Notamos que esta função tem três raízes, correspondentes aos pontos A, B, C:
e como são raízes, temos que
Conhecidas as raízes, a lei que rege a função f é descrita por
Aplicando a distributiva nos fatores dos colchetes,
Aplicando a distributiva novamente,
sendo
Então, f é dada por
Dúvidas? Comente.
Bons estudos! :-)
Lukyo:
Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7263339
Perguntas interessantes