Obtenha a equação geral do plano π que contém o ponto A=(1,-2,1) e apresenta o vetor
=(2,-1,0) como um vetor normal.
Soluções para a tarefa
Respondido por
3
Olá YEScience
Para acharmos a 1 equação :
1,1 substituindo por letra nessa 1 equação por x e z.
Ponto A=(1,-2,1)
X=1
Y=-2
Z=1
x-2y+z=0
Para acharmos a 2 equação:
-1,0 substituído por y e z.
Ponto wr=(2,-1,0)
X=2
Y= -1
Z=0
2x-y+z=0
e no final faz :
(x-1) +2 - (y-1)( z-2)=0
2x-y-4=0
resultado final : 2x-y-4=0
Para acharmos a 1 equação :
1,1 substituindo por letra nessa 1 equação por x e z.
Ponto A=(1,-2,1)
X=1
Y=-2
Z=1
x-2y+z=0
Para acharmos a 2 equação:
-1,0 substituído por y e z.
Ponto wr=(2,-1,0)
X=2
Y= -1
Z=0
2x-y+z=0
e no final faz :
(x-1) +2 - (y-1)( z-2)=0
2x-y-4=0
resultado final : 2x-y-4=0
YESCience:
a resposta no livro está como . R: π= 2x-y-4=0
Perguntas interessantes
Matemática,
9 meses atrás
Música,
9 meses atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Administração,
1 ano atrás