Matemática, perguntado por aluno53278, 6 meses atrás

Observe os triângulos abaixo e usando a lei do seno e a lei do cosseno, calcule o valor de x e y​

Anexos:

Soluções para a tarefa

Respondido por gabrielzzzin
2

Resposta:

x ≅ 12,5

y = 4√6

Explicação passo a passo:

Relembrando (olhe a foto que segue em anexo)

Para o primeiro triangulo, usamos a lei dos cossenos. Então, teremos:

a² = b² + c² - 2 * b * c * cos â

x² = 10² + 14² - 2 * 10 * 14 * cos 60

x² = 100 + 196 - 280 * cos 60

x² = 100 + 196 - 280 * 1/2

x² = 100 + 196 - 140

x² = 156 (jogando raiz quadrado dos dois lados, teremos:

√x²= √156

x ≅ 12,5

Para o segundo triangulo, usamos a lei do seno. Então, teremos:

a/ sen a = b/sen = c/sen c

c / sen c = y/sen b

8/sen 45° = y/sen 60°

8/(√2/2) = y/ (√3/2)

16/ √2 = 2y/√3 (multiplicando em cruz, temos:

16 * √3 = 2y * √2 (isolando y, temos:

y = (16√3)/(2√2)

(vc terá que racionalizar isso, ou seja, multiplicar por √2 o numerador e denominador e encontrará:

y = 16√6/4

y = 4√6

Espero ter ajudado e desejo-lhe uma boa noite e boa semana,

Atenciosamente,

ASS: gabrielzzzin

Anexos:

aluno53278: vlw man mt obrigado
Perguntas interessantes