Matemática, perguntado por Renata6548, 6 meses atrás

Observe o triângulo PQR cujas coordenadas dos vértices são os pontos P(1,3), Q(–2,5) e R(–3,–4), o qual está representado no plano cartesiano abaixo, graduado em centímetros. Quantos centímetros quadrados de área tem esse triângulo? 36 cm2. 21,5 cm2. 18,0 cm2. 14,5 cm2. 13,5 cm2.


ericwillian2018: Observe os pontos L, M, N, O e P indicados no plano cartesiano abaixo.

M110209I7

Em qual desses pontos a abscissa é igual a – 4 e a ordenada é igual a 2?
L.
M.
N.
O.
P.

Soluções para a tarefa

Respondido por caiolog2002
86

Resposta

  14,5

Explicação passo-a-passo:

vc monta a determinante em forma de matriz

1   3    1   1  3

-2  5    1  -2 5

-3 -4    1  -3 -4

ai faz as multiplicações em diagonal e vai ficar:

(5 -9 +8) - (-6-4-15)

 (13-9) - (-25)

        4+25

           29

ai falta só a superficie

pega o valor e multiplica por 1/2

29 x 1/2= 14,5

Respondido por gustavoif
58

Esse triângulo possui 14,5 cm² de área. Alternativa D) é a correta.

Vejamos como resolver essa questão. Estamos diante de um problema de geometria.

Lembrando que para calcular a área de um triângulo com pontos em coordenadas cartesianas, podemos calcular o determinante da matriz com os pontos e a área é igual a 1/2 x determinante.

Vamos aos dados iniciais:

  • Observe o triângulo PQR cujas coordenadas dos vértices são os pontos P(1,3), Q(–2,5) e R(–3,–4), o qual está representado no plano cartesiano. Quantos centímetros quadrados de área tem esse triângulo?

Resolução:

Separando os pontos e colocando na matriz, temos:

Matriz D = \left[\begin{array}{ccc}1&3&1\\-2&5&1\\-3&-4&1\end{array}\right]

Calcular o det[D] = (+15+4+6+5-9+8) = 29 (olhar figura em anexo para o procedimento)

Área = 1/2 . Det[D] = 1/2 . 29 = 14,5 cm²

Veja mais em matemática em:

https://brainly.com.br/tarefa/31215655

Anexos:

pedrosouzaespin: como eu sei a ordem pra montar a determinante?
Perguntas interessantes