ENEM, perguntado por DayseNascimento, 8 meses atrás

Observe o quadrado LMNR, cujas coordenadas dos vértices podem ser identificadas no plano cartesiano abaixo.

M090912H6

Qual é a medida da área, em unidades de área, desse quadrado LMNR?
4 u. a.
8 u. a.
16 u. a.
25 u. a.

Anexos:

Soluções para a tarefa

Respondido por amandadh
11

A área do quadrado LMNR é b) 8 u. a.

Para calcular área do quadrado precisamos descobrir a medida da sua aresta. É possível realizar esse cálculo utilizando o teorema de Pitágoras aplicado a um dos 4 triângulos retângulos formados no gráfico.

Calculando a hipotenusa do triângulo LCR, no qual C é o ponto central do quadrado, temos:

LR² = LC² + RC²

LR² = (2)² + (2)²

LR = a = 2√2

Logo, a área do quadrado será:

A = a²

A = (2√2)²

A = 8 u.a.

Espero ter ajudado!

Perguntas interessantes