Matemática, perguntado por lennoncandido9, 9 meses atrás

Observe as imagens das moedas abaixo. Perceba que em cada grupo de moedas sempre está sendo representado um real, mas em moedas menores. Três moedas de 25 centavos é igual a 3/4 de um real. É possível representar esta mesma fração utilizando outro tipo de moeda?​

Anexos:

Soluções para a tarefa

Respondido por Atoshiki
158

Existem moedas de:

  • R$ 0,01 (um centavo)
  • R$ 0,05 (cinco centavos)
  • R$ 0,10 (dez centavos)
  • R$ 0,25 (vinte e cinco centavos) → exemplo
  • R$ 0,50 (cinquenta centavos)
  • R$ 1,00 ( um real)

É possível representar números no formato decimal em fração. Para isto, basta copiar o número inteiro sem a vírgula como numerador e colocar um múltiplo de dez como denominador. A quantidade de casas após a vírgula determinará a quantidade de zeros do múltiplo de dez (denominador).

Após encontrar a fração, aplique máximo divisor comum (MDC) entre o numerador e o denominador. Com o resultado do MDC, efetue a simplificação da fração a fim de obter o seu formato irredutível.

Após encontrar a fração que representa o valor da moeda, para que ela seja igual a 3/4, ela deve ser múltiplo desta fração. Com isto, para saber se é múltiplo ou não, basta dividir os 3/4 pela fração que representa a moeda, pois isto resultará na quantidade de moedas necessárias que representará os 3/4, caso a conta dê exata (não decimal). Se a fração for irredutível, significa que a divisão não é exata. Provando que o inverso de uma multiplicação é a divisão. Veja:

Analisando o exemplo do enunciado:

"... três moedas de 25 centavos é igual 3/4 ...": 0,25 + 0,25 + 0,25 = 3 × 0,25

  • Fração de R$ 0,25:

MDC:

25, 100 | 2

25, 50 | 2

25, 25 | 5 ←←←

5, 5 | 5 ←←←

1, 1

MDC (25, 100) = 5 . 5 = 25

Fração na forma irredutível:

0,25=\dfrac{25}{100} (\div 25) = \dfrac{1}{4}

Para ser igual à \dfrac{3}{4}:

\dfrac{\dfrac{3}{4} }{\dfrac{1}{4} }=\dfrac{3}{4} \cdot \dfrac{4}{1}=\dfrac{12}{4}=3

Assim, a conta deu exata, logo precisa-se de 3 moedas de R$ 0,25 para ser igual à  \dfrac{3}{4}.

Calculando as demais moedas:

>>>>> Moeda de R$ 0,01 (um centavo)

Fração:

0,01 = \dfrac{1}{100}

MDC:

1, 100 | 2

1, 50| 2

1, 25 | 5

1, 5 | 5

1, 1

MDC (1, 100) = ∅ → não há MDC, logo a fração está na forma irredutível.

Para ser igual à \dfrac{3}{4}:

\dfrac{\dfrac{3}{4} }{\dfrac{1}{100} }=\dfrac{3}{4} \cdot \dfrac{100}{1}=\dfrac{300}{4}=75

Assim, a conta deu exata, logo precisa-se de 75 moedas de R$ 0,01 para ser igual à \dfrac{3}{4}.

>>>>> Moeda de R$ 0,05 (cinco centavos)

Fração:

0,05 = \dfrac{5}{100}

MDC:

5, 100 | 2

5, 50 | 2

5, 25 | 5 ←←←

1, 5 | 5

1, 1

MDC (5, 100) = 5

Fração na forma irredutível:

0,05 = \dfrac{5}{100} (\div 5)=\dfrac{1}{20}

Para ser igual à \dfrac{3}{4}:

\dfrac{\dfrac{3}{4} }{\dfrac{1}{20} }=\dfrac{3}{4} \cdot \dfrac{20}{1}=\dfrac{60}{4}=15

Assim, a conta deu exata, logo precisa-se de 15 moedas de R$ 0,05 para ser igual à \dfrac{3}{4}.

OBSERVAÇÃO: A partir deste ponto, como ainda faltam três moedas para analisarmos, para agilizar o processo de solução, farei a análise direta.

>>>>> Moeda de R$ 0,10 (dez centavos)

0,10 = \dfrac{10}{100} (\div 10)=\dfrac{1}{10}

\dfrac{\dfrac{3}{4} }{\dfrac{1}{10} }  =\dfrac{3}{4}\cdot \dfrac{10}{1} =\dfrac{30}{4} (\div 2)=\dfrac{15}{2}  

Assim, a conta NÃO deu exata, não há quantidade de moedas que resulte em  \dfrac{3}{4}.

>>>>> Moeda de R$ 0,50 (cinquenta centavos)

0,50 = \dfrac{50}{100} (\div 50)=\dfrac{1}{2}

\dfrac{\dfrac{3}{4} }{\dfrac{1}{2} }  =\dfrac{3}{4}\cdot \dfrac{2}{1} =\dfrac{6}{4} (\div 2)=\dfrac{3}{2}  

Assim, a conta NÃO deu exata, não há quantidade de moedas que resulte em  \dfrac{3}{4}.

>>>>> Moeda de R$ 1,00 (um real)

1,00 = \dfrac{100}{100} (\div 100)=\dfrac{1}{1}=1

\dfrac{\dfrac{3}{4} }{1 }  =\dfrac{3}{4}\cdot 1 =\dfrac{3}{4}  

Assim, a conta NÃO deu exata, não há quantidade de moedas que resulte em  \dfrac{3}{4}.

Resposta:

Portanto, além das 3 moedas de R$ 0,25 que resulta em 3/4 de real,  75 moedas de R$ 0,01 (um centavo) resulta em 3/4 de real, e 15 moedas de R$ 0,05 (cinco centavos) resulta em 3/4 de real.

Se quiser saber mais, acesse:

brainly.com.br/tarefa/4908564

Bons estudos e até a próxima!

Não se esqueça de marcar a melhor resposta, votar e classificar a solução dada!

Anexos:
Respondido por reuabg
0

15 moedas de 5 centavos representam 3/4 de 1 real, o que torna correta a alternativa c).

Para resolvermos essa questão, devemos aprender o que é uma fração.

O que é uma fração?

Uma fração é um número racional escrito no formato a/b, onde a é o numerador da fração e indica quantas partes estamos tomando de algo, enquanto b é o denominador e indica em quantas partes estamos dividindo algo.

Com isso, para representarmos 1 real com moedas, temos as seguintes quantidades:

  • 1 moeda de 1 real.
  • 4 moedas de 25 centavos.
  • 10 moedas de 10 centavos.
  • 20 moedas de 5 centavos.
  • 100 moedas de 1 centavo.

Então, temos que 15 moedas de 5 centavos representam 5 x 15 = 75 centavos. Ou seja, tomando 15 de 20 moedas de 5 centavos, temos o total de 75 centavos de 1 real.

Portanto, concluímos que 15 moedas de 5 centavos representam 3/4 de 1 real, o que torna correta a alternativa c).

Para aprender mais sobre frações, acesse:

brainly.com.br/tarefa/44273976

Anexos:
Perguntas interessantes