Observe a pirâmide regular hexagonal a seguir e calcule o que se pede.
a) Apótema da base
b) Apótema da pirâmide
c) Aresta lateral
d) Área da base
e) Área lateral
f) Área total
Soluções para a tarefa
Respostas:
A: 4√3
B: 8
C: 4√5
D: 96√3
E: 192
F: 288 (A raiz não entra pq é somente para a base > olhe a foto para entender)
Explicação passo-a-passo: confia que tá certo
ESPERO TER AJUDADOO
Da figura, sabemos que a altura da pirâmide é 4 cm e a medida do lado da base é 8 cm.
a) Podemos dividir a base em seis triângulos equiláteros. O apótema da base será a altura de um desses triângulos cujo lado mede 8 cm. Pelo teorema de Pitágoras:
h² = 8² - 4²
h² = 64 - 16
h² = 48
h = 4√3 cm
b) O apótema da pirâmide será a medida da altura de do triângulo que forma as faces laterais. Essa medida pode ser encontrada pelo teorema de Pitágoras ao formar um triângulo utilizando a altura da pirâmide e o apótema da base:
a² = 4² + (4√3)²
a² = 16 + 48
a = 8 cm
c) A aresta lateral será dada pelo teorema de Pitágoras:
l² = 8² + 4²
l² = 80
l = 4√5 cm
d) A área da base é dada pela área do hexágono regular:
Ab = 3·8²√3/2
Ab = 96√3 cm²
Ab ≈ 166,3 cm²
e) A área lateral será a área dos seis triângulos:
Al = 6 · 8·8/2
Al = 192 cm²
f) A área total é a soma da área da base e área lateral:
At = 96√3 + 192 cm²
At ≈ 358,3 cm²
Leia mais em:
https://brainly.com.br/tarefa/40459690
https://brainly.com.br/tarefa/16799372
https://brainly.com.br/tarefa/7972761