O volume gerado pela rotação em torno do eixo dos X do grafico de uma função y= f(x) num intervalo [ A, B ] e dado por

Sendo assim calcule o volume do solido de revolução gerado pela função y=2x e torno dos X, no intervalo X ∈ [ 1, 2 ].
Alternativas:
a) 
b) 
c) 
d)
Soluções para a tarefa
Respondido por
4
Boa tarde Pirata!
Solução!
Formula para calcular o volume!
![\boxed{V= \pi \displaystyle \int_{a}^{b}[f(x)]^{2}dx} \boxed{V= \pi \displaystyle \int_{a}^{b}[f(x)]^{2}dx}](https://tex.z-dn.net/?f=%5Cboxed%7BV%3D+%5Cpi+%5Cdisplaystyle+%5Cint_%7Ba%7D%5E%7Bb%7D%5Bf%28x%29%5D%5E%7B2%7Ddx%7D+++)

![V= \pi \displaystyle \int_{1}^{2}[2x^{1} ]^{2}dx\\\\\\\\\\\ V= \pi \displaystyle \int_{1}^{2}(4x^{2} )dx\\\\\\\\\\ V= \pi \displaystyle \int_{1}^{2}\frac{(4x)}{2+1} ^{2+1} dx= \frac{4x^{3} }{3} \\\\\\\\\\ V= \pi \Bigg|_{1}^{2} \left ( \frac{ 4x^{3} }{3} \right )-\left ( \frac{4 x^{3} }{3} \right )\\\\\\\\\\ V= \pi \Bigg|_{1}^{2} \left ( \frac{ 4(2)^{3} }{3} \right )-\left ( \frac{4 (1)^{3} }{3} \right ) V= \pi \displaystyle \int_{1}^{2}[2x^{1} ]^{2}dx\\\\\\\\\\\ V= \pi \displaystyle \int_{1}^{2}(4x^{2} )dx\\\\\\\\\\ V= \pi \displaystyle \int_{1}^{2}\frac{(4x)}{2+1} ^{2+1} dx= \frac{4x^{3} }{3} \\\\\\\\\\ V= \pi \Bigg|_{1}^{2} \left ( \frac{ 4x^{3} }{3} \right )-\left ( \frac{4 x^{3} }{3} \right )\\\\\\\\\\ V= \pi \Bigg|_{1}^{2} \left ( \frac{ 4(2)^{3} }{3} \right )-\left ( \frac{4 (1)^{3} }{3} \right )](https://tex.z-dn.net/?f=V%3D+%5Cpi+%5Cdisplaystyle+%5Cint_%7B1%7D%5E%7B2%7D%5B2x%5E%7B1%7D+%5D%5E%7B2%7Ddx%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+V%3D+%5Cpi+%5Cdisplaystyle+%5Cint_%7B1%7D%5E%7B2%7D%284x%5E%7B2%7D+%29dx%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+V%3D+%5Cpi+%5Cdisplaystyle+%5Cint_%7B1%7D%5E%7B2%7D%5Cfrac%7B%284x%29%7D%7B2%2B1%7D+%5E%7B2%2B1%7D+dx%3D+%5Cfrac%7B4x%5E%7B3%7D+%7D%7B3%7D+%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+V%3D+%5Cpi+%5CBigg%7C_%7B1%7D%5E%7B2%7D+%5Cleft+%28+%5Cfrac%7B+4x%5E%7B3%7D+%7D%7B3%7D+%5Cright+%29-%5Cleft+%28+%5Cfrac%7B4+x%5E%7B3%7D+%7D%7B3%7D+%5Cright+%29%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+V%3D+%5Cpi+%5CBigg%7C_%7B1%7D%5E%7B2%7D+%5Cleft+%28+%5Cfrac%7B+4%282%29%5E%7B3%7D+%7D%7B3%7D+%5Cright+%29-%5Cleft+%28+%5Cfrac%7B4+%281%29%5E%7B3%7D+%7D%7B3%7D+%5Cright+%29+)

![\boxed{Resposta:V= \pi \displaystyle \int_{1}^{2}[2x]^{2}dx= \frac{28 \pi }{3}~~\boxed{Alternativa~~D}} \boxed{Resposta:V= \pi \displaystyle \int_{1}^{2}[2x]^{2}dx= \frac{28 \pi }{3}~~\boxed{Alternativa~~D}}](https://tex.z-dn.net/?f=%5Cboxed%7BResposta%3AV%3D+%5Cpi+%5Cdisplaystyle+%5Cint_%7B1%7D%5E%7B2%7D%5B2x%5D%5E%7B2%7Ddx%3D+%5Cfrac%7B28+%5Cpi+%7D%7B3%7D%7E%7E%5Cboxed%7BAlternativa%7E%7ED%7D%7D)
Boa tarde!
Bons estudos!
Solução!
Formula para calcular o volume!
Boa tarde!
Bons estudos!
Lukyo:
Letra d. 28 Pi/3
Respondido por
2
Logo, o volume do sólido de revolução é dado por
Resposta: alternativa
Perguntas interessantes