Matemática, perguntado por carolll236, 1 ano atrás

O vetor v⃗ =(4,3,−6) em R3 pode ser escrito como combinação linear dos vetores: e⃗ 1=(1,−3,2) e e⃗ 2=(2,4,−1) ?


Usuário anônimo: Bom dia! Esta faltando um vetor!
carolll236: esta assim no exercício

Soluções para a tarefa

Respondido por Usuário anônimo
1
Bom dia Carol!

Solução!

Sendo~~a,b~~\in\mathbb{R}^{3}\\\\\\\
v_{1}(1,-3,2)\\\\\\\
 v_{2}(2,4-1)\\\\\\\
 v=(4,3,-6)\\\\\\\\\\

a(1,-3,2)+b(2,4,-1)=(4,3,-6)\\\\\\
 \begin{cases}
a+2b=4\\
-3a+4b=3\\
2a-b=-6

\end{cases}\\\\\\
Fazendo!\\\\\\
-b=-6-2a.(-1)\\\\\
\boxed{b=6+2a}\\\\\\
Substituindo!\\\\\
a+2b=4\\\\\
a+2(6+2a)=4\\\\\
a+12+4a=4\\\\\\
5a=4-12\\\\\
5a=-8\\\\\
\boxed{a= -\frac{8}{5}}


b=6+2a\\\\\
b=6+2(- \frac{8}{5})\\\\\
b=6- \frac{16}{5}\\\\\\
b= \frac{30-16}{5}\\\\\
\boxed{b= \frac{14}{5}}


\boxed{a=- \frac{8}{5}~~b= \frac{14}{5}}


- \frac{8}{5}(1,-3,2)+ \frac{14}{5}(2,4,-1)=(4,3,-6)\\\\\\
( -\frac{8}{5}, \frac{24}{5}, -\frac{16}{5})+( \frac{28}{5}, \frac{56}{5}, \frac{14}{5})=(4,3,-6)\\\\\\
( \frac{8-28}{5}, \frac{24+56}{5}, \frac{-16+14}{5})=(4,3-6)\\\\\\
\boxed{(4,16, -\frac{2}{5}) \neq (4,3,-6)}


\boxed{Resposta:~~N\~ao}


Bom dia!
Bons estudos!




carolll236: Muito obrigada ^
Perguntas interessantes