Matemática, perguntado por deusikely, 1 ano atrás

O vetor u=(-1,-1,-2) tem angulação de 60º com o vetor MN definido pelos pontos M(0,3,4) e N( x,-1,2). Com base no exposto, o valor de x está representado na alternativa x= –34 ou x=-2 x= –34 ou x=2 x= –30 ou x=2 x= –34 ou x=3 x= 34 ou x=2

Soluções para a tarefa

Respondido por Usuário anônimo
6
Boa noite!

Solução!

Dados!

\vec{u}=(-1,-1,-2)\\\\\\
M(0,3,4)\\\\\\
N(x,-1,2)\\\\\\
\theta=60\º

Vamos transformar o ponto M e N em vetores fazendo a sua diferença.


\vec{v}=(N-M)\\\\\
\vec{v}=(x,-1,2)-(0,3,4)\\\\
\vec{v}=(x,-1,2)+(0,-3,-4)\\\\
\boxed{\vec{v}=(x,-4,-2)}\\\\\\\
\boxed{\vec{u}=(-1,-1,-2)}\\\\\\
Cos\theta= \dfrac{1}{2}


Cos\theta= \dfrac{\vec{u}.\vec{v}}{|\vec{u}|.|\vec{v}|}\\\\\\\
 \dfrac{1}{2}= \dfrac{(-x,-1,-2).(x,-4,-2)}{ \sqrt{(-1)^{2}+(-1)^{2}+(-2)^{2}. }\sqrt{(x)^{2}+(-4)^{2} +(-2)^{2}}}\\\\\\\\


 \dfrac{1}{2}= \dfrac{(-x+4+4)}{ \sqrt{(1+1+4. }\sqrt{x^{2}+16 +4}}\\\\\\\\



\dfrac{1}{2}= \dfrac{(-x+8)}{ \sqrt{6. }\sqrt{x^{2}+20}}\\\\\\\\
Vamos~~elevar~~ambos~~os~~membros~~ ao ~~quadrado.\\\\\\

\left (\dfrac{1}{2}\right )^{2}= \dfrac{(-x+8)^{2} }{ (\sqrt{6})^{2} .(\sqrt{x^{2}+20} )^{2} }\\\\\\\\ \dfrac{1}{4}= \dfrac{ x^{2} -8x-8x+64}{6( x^{2} +20}

 \dfrac{1}{4}= \dfrac{ x^{2} -16x+64}{6x^{2} +120}   \\\\\


6 x^{2} +120=4 x^{2} -64x+256\\\\\\\ 6 x^{2} -4 x^{2} +64x+120-256=0\\\\\\ 2 x^{2} +64x-136=0\\\\\\ Aplicando~~Bhaskara!\\\\\\ x= \dfrac{-64\pm \sqrt{(-64)^{2}-4.2.-136} }{4}\\\\\\\ x= \dfrac{-64\pm \sqrt{4096+1088} }{4}

x= \dfrac{-64\pm \sqrt{5184} }{4}\\\\\\\ x= \dfrac{-64\pm 72}{4}\\\\\\\ Raizes!\\\\\\ x_{1}= \dfrac{-64+72}{4}= \dfrac{8}{4}=2\\\\\\ x_{2}= \dfrac{-64-72}{4}= \dfrac{-136}{4}=-34\\\\\\ \boxed{Resposta:~~x=2~~~~x=-34}\\\\\\\\\ Boa noite!\\\\\\ Bons estudos!

Perguntas interessantes