O vértice de uma parábola é dado pelo ponto V(-b/2a, -∆/4a). Calcular o vértice das parábolas das funções abaixo:
a) f(x) = x2 – 6x + 5. b) f(x) = 3x2 – 6x + 4
Soluções para a tarefa
Resposta:
a) Vértice ( 3 ; - 4 )
b) Vértice ( 1 ; 1 )
Explicação passo a passo:
a) f(x) = x² - 6x + 5
O cálculo das coordenadas do vértice é dado pelas fórmula :
V ( - b/2a ; - Δ/4a)
1ª etapa - Recolha de dados
a = 1
b = - 6
c = 5
Δ = ( - 6 )² - 4 * 1 * 5 = 36 - 20 = 16
2ª Etapa - Aplicar a fórmula indicada
Coordenada em x
x = - b/2a = - (-6 ) / (2*1 ) = 6/2 = 3
Coordenada em y
y = - 16 / (4/1) = - 4
Vértice ( 3 ; - 4 ) ( gráfico em anexo 1 )
b) f(x) = 3x² - 6x + 4
1ª etapa - Recolha de dados
a = 3
b = - 6
c = 4
Δ = (- 6 )² - 4 * 3 * 4 = 36 - 48 = - 12
2ª Etapa - Aplicar a fórmula indicada
Coordenada em x
x = -b/2a = - ( -6 ) / (2*3) = 6/6 = 1
Coordenada em y
y = - Δ / 4a = - ( - 12 ) / (4*12) = 12/12 = 1
Vértice ( 1 ; 1 ) ( gráfico em anexo 1 )
Bons estudos.
----------------------
Símbolos: ( *) multiplicação ( / ) divisão