Matemática, perguntado por graciellynivia, 8 meses atrás

O valor numérico da expressão:\frac{sen\frac{\pi }{2}+ cos 240º - [tg (-750º)^{2} }{(sec 1200º) (cossec \frac{9\pi }{4}) + (cotg \frac{5\pi }{6} )^{2} }

Soluções para a tarefa

Respondido por Makaveli1996
4

Oie, Td Bom?!

 =  \frac{ \sin( \frac{\pi}{2} )  +  \cos(240°)  -  \tan( - 750°)  {}^{2} }{ \sec(1200°)  \csc( \frac{9\pi}{4} ) +  \cot( \frac{5\pi}{6} )   {}^{2}  }

Calculando por partes:

1.

  = \sin( \frac{\pi}{2} )

 = 1

2.

  = \cos(240°)

 =  \cos(240° \: . \:  \frac{\pi}{180°} )

 =  \cos( \frac{4\pi}{3} )

3.

 =  -  \tan( - 750°)

 =  -  \tan( - 750° \: . \:  \frac{\pi}{180°} )

 =  -  \tan( -  \frac{25\pi}{6} )

4.

 =  \sec(1200°)

 =   \sec(1200° \: . \:  \frac{\pi}{180°} )

 =  \sec( \frac{20\pi}{3} )

5.

 =  \csc( \frac{9\pi}{4} )

 =  \csc( \frac{\pi}{4}  + 2\pi)

 =  \csc( \frac{\pi}{4} )

 =  \sqrt{2}

6.

 =  \cot( \frac{5\pi}{3} )

 =  -  \sqrt{3}

• Continuando:

 =  \frac{1 +  \cos( \frac{4\pi}{3} )  -  \tan( -  \frac{25\pi}{6} )  {}^{2} }{ \sec( \frac{20\pi}{3} ) \: . \:  \sqrt{2}   + ( -  \sqrt{3} ) {}^{2} }

Calculando por partes:

1.

 =  \cos( \frac{4\pi}{3} )

 =  -  \frac{1}{2}

2.

 =  \tan( -  \frac{25\pi}{6} )

 =  -  \tan( \frac{25\pi}{6} )

 =  -  \tan( \frac{\pi}{6}  + 4\pi)

 =  -  \tan( \frac{\pi}{6} )

 =   - \frac{ \sqrt{3} }{3}

3.

 =  \sec( \frac{20\pi}{3} )

 =  \sec( \frac{2\pi}{3}  + 2 \: . \: 3\pi)

 =  \sec( \frac{2\pi}{3} )

 =  - 2

4.

 = ( -  \sqrt{3} ) {}^{2}

 =  \sqrt{3}  {}^{2}

• Continuando:

 =  \frac{1 -  \frac{1}{2}  - ( -  \frac{ \sqrt{3} }{3} ) {}^{2} }{ - 2 \sqrt{2} +  \sqrt{3}  {}^{2}  }

 =  \frac{1 -  \frac{1}{2}  -  \frac{3}{9} }{ - 2 \sqrt{2}  + 3}

 =  \frac{1  -  \frac{1}{2}  -  \frac{1}{3} }{ - 2 \sqrt{2}  + 3}

 =  \frac{ \frac{6 - 3 - 2}{6} }{ - 2 \sqrt{2} + 3 }

 =  \frac{ \frac{1}{6} }{ - 2 \sqrt{2}  + 3}

 =  \frac{1}{6}  \div ( -  2\sqrt{2}  + 3)

 =  \frac{1}{6}  \: . \:  \frac{1}{ - 2 \sqrt{2}  + 3}

 =  \frac{1 \: . \: 1}{6( -  2\sqrt{2}  + 3)}

 =  \frac{1}{6( - 2 \sqrt{2}  + 3)}

Racionalizando:

 =  \frac{1}{6( - 2 \sqrt{2} + 3) }  \:  .\:  \frac{ - 2 \sqrt{2} - 3 }{ - 2 \sqrt{2}  - 3}

 =  \frac{1( - 2 \sqrt{2}  - 3)}{6( - 2 \sqrt{2} + 3) \: . \: ( - 2 \sqrt{2}  - 3) }

 =  \frac{ - 2 \sqrt{2}  - 3}{6(4 \: . \: 2 - 9)}

 =  \frac{ - 2 \sqrt{2}  - 3}{6(8 - 9)}

 =  \frac{ - 2 \sqrt{2}  - 3}{6 \: . \: ( - 1)}

 =  \frac{ - 2 \sqrt{2}  - 3}{ - 6}

 =  -  \frac{ - 2 \sqrt{2} - 3 }{6}

 =  -  \frac{ - (2 \sqrt{2} + 3) }{6}

 =  \frac{2 \sqrt{2}  + 3}{6}

≈0,971405...

Att. Makaveli1996

Perguntas interessantes