Matemática, perguntado por renat1a0lunizand, 1 ano atrás

o valor de x para que o triângulo formado pelos pontos a ( -1, 1 ) , b ( 2,5 ) é c ( x , 2 ) seja retângulo em b é

Soluções para a tarefa

Respondido por josivanjunior
0
Para ter um ângulo reto em b, é preciso que seja um triângulo isósceles, ou seja, os catetos têm o mesmo comprimento.

Partindo disso, podemos usar a distância de pontos para calcular essa resposta, igualando as distâncias do ponto A para B e do ponto B para C.

Da,b = √(-1-2)²+(1-5)²

Db,c = √(2-x)²+(5-2)²

igualando...

√(-1-2)²+(1-5)² = √(2-x)²+(5-2)²

√(-3²)+(-4)² = √(x²-4x+4)+(3)²

√25 = √x²-4x+13

eleva ambos os lados da igualdade ao quadrado

25 = x²-4x+13

x²-4x-12 = 0

X = 4 ± √16+48/2

x' = 4+8/2 = 6

X" = 4-8/2 = -2

Só o X' satisfaz o que se pede, portanto X = 6

C(6,2)
Perguntas interessantes