Matemática, perguntado por lucyanamarwa932, 8 meses atrás

O valor de x no sistema linear a seguir é: 2x + y + 3z = 19 x + 2y + z = 123 x − y + z = 7


joaby7963: Alguém sabe responder

Soluções para a tarefa

Respondido por ShinyComet
6

    \begin{cases}2x+y+3z=19\\\\x+2y+z=123\\\\x-y+z=7\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}y=19-2x-3z\\\\z=123-x-2y\\\\x=7+y-z\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}y=19-2\times(7+y-z)-3z\\\\z=123-(7+y-z)-2y\\\\x=7+y-z\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}y=19-14-2y+2z-3z\\\\z=123-7-y+z-2y\\\\x=7+y-z\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}y+2y=5-z\\\\z-z=116-3y\\\\x=7+y-z\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}3y=5-z\\\\0=116-3y\\\\x=7+y-z\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}z=5-3y\\\\3y=116\\\\x=7+y-z\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}z=5-3\times\dfrac{116}{3}\\\\y=\dfrac{116}{3}\\\\x=7+\dfrac{116}{3}-z\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}z=5-116\\\\y=\dfrac{116}{3}\\\\x=\dfrac{7\times3}{3}+\dfrac{116}{3}-z\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}z=-111\\\\y=\dfrac{116}{3}\\\\x=\dfrac{21}{3}+\dfrac{116}{3}-(-111)\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}z=-111\\\\y=\dfrac{116}{3}\\\\x=\dfrac{137}{3}+111\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}z=-111\\\\y=\dfrac{116}{3}\\\\x=\dfrac{137}{3}+\dfrac{111\times3}{3}\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}z=-111\\\\y=\dfrac{116}{3}\\\\x=\dfrac{137}{3}+\dfrac{333}{3}\end{cases}\Leftrightarrow

\Leftrightarrow\begin{cases}z=-111\\\\y=\dfrac{116}{3}\\\\x=\dfrac{470}{3}\end{cases}

Resposta: O valor de x é  \frac{470}{3}.

Podes ver mais exercícios sobre resolução de sistemas lineares em:  

  • https://brainly.com.br/tarefa/36196936
  • https://brainly.com.br/tarefa/32093707
  • https://brainly.com.br/tarefa/32072039
Anexos:
Perguntas interessantes