Matemática, perguntado por biahbrigato, 5 meses atrás

O valor de “ x “ na proporção 2/5 = x + 8/x + 50 será igual a :

Soluções para a tarefa

Respondido por biamedeiros295
0

Resposta:

Uma proporção é uma igualdade entre razões.

Para determinar o valor de x nas proporções, podemos fazer manipulações algébricas, veja:

~~

Item 1)

\begin{gathered}\begin{array}{l}\sf\dfrac{9}{63}=\dfrac{x}{7}\\\\\sf7\cdot\dfrac{9}{63}=\dfrac{x}{7}\cdot7\\\\\sf\dfrac{63}{63}=x\\\\\!\boxed{\sf x=1}\end{array}\end{gathered}

63

9

=

7

x

7⋅

63

9

=

7

x

⋅7

63

63

=x

x=1

~~

Item 2)

\begin{gathered}\begin{array}{l}\sf\dfrac{2,5}{x}=\dfrac{5}{10}\\\\\sf10\cdot\dfrac{2,5}{x}=\dfrac{5}{10}\cdot10\\\\\sf\dfrac{25}{x}=5\\\\\sf x\cdot\dfrac{25}{x}=5\cdot x\\\\\sf25=5x\\\\\sf\dfrac{25}{5}=\dfrac{5x}{5}\\\\\!\boxed{\sf x=5}\end{array}\end{gathered}

x

2,5

=

10

5

10⋅

x

2,5

=

10

5

⋅10

x

25

=5

x⋅

x

25

=5⋅x

25=5x

5

25

=

5

5x

x=5

~~

Item 3)

\begin{gathered}\begin{array}{l}\sf\dfrac{2}{9}=\dfrac{x+8}{x+50}\\\\\sf(x+50)\cdot\dfrac{2}{9}=\dfrac{x+8}{x+50}\cdot(x+50)\\\\\sf\dfrac{2x+100}{9}=x+8\\\\\sf9\cdot\dfrac{2x+100}{9}=(x+8)\cdot9\\\\\sf2x+100=9x+72\\\\\sf9x+72=2x+100\\\\\sf-2x+9x+72=2x+100-2x\\\\\sf7x+72=100\\\\\sf-72+7x+72=100-72\\\\\sf7x=28\\\\\sf\dfrac{7x}{7}=\dfrac{28}{7}\\\\\!\boxed{\sf x=4}\end{array}\end{gathered}

9

2

=

x+50

x+8

(x+50)⋅

9

2

=

x+50

x+8

⋅(x+50)

9

2x+100

=x+8

9⋅

9

2x+100

=(x+8)⋅9

2x+100=9x+72

9x+72=2x+100

−2x+9x+72=2x+100−2x

7x+72=100

−72+7x+72=100−72

7x=28

7

7x

=

7

28

x=4

~~

Item 4)

\begin{gathered}\begin{array}{l}\sf\dfrac{x}{56}=\dfrac{11,2}{4}\\\\\sf56\cdot\dfrac{x}{56}=\dfrac{11,2}{4}\cdot56\\\\\sf x=\dfrac{627,2}{4}\\\\\!\boxed{\sf x=156,8}\end{array}\end{gathered}

56

x

=

4

11,2

56⋅

56

x

=

4

11,2

⋅56

x=

4

627,2

x=156,8

~~

Att. Nasgovaskov

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Perguntas interessantes