Matemática, perguntado por heloisapivetta, 1 ano atrás

o valor de log1/4³² +log 10√10 é:

Soluções para a tarefa

Respondido por Niiya
12
Propriedades que utilizarei:

1 / a^{n} = a^{-n}
 \sqrt[n]{x^{z}}=x^{z/n}
 \sqrt{x} = \sqrt[2]{x}

log_{(b)}(a^{n}) = n*log_{b}(a)
log_{(b^{n})}(a)=(1/n)*log_{b}(a)
log_{(x)}(x)=1
_________________________

log_{(1/4)}32 + log_{(10)}\sqrt{10}=log_{(1/2^{2})}(2^{5}) + log_{(10)}(10^{1/2})
log_{(1/4)}32 + log_{(10)}\sqrt{10}=[log_{(2^{-2})}(2^{5})] + [(1 / 2)*log_{(10)}10]
log_{(1/4)}32 + log_{(10)}\sqrt{10}= [(1 / [-2])*log_{(2)}(2^{5})] + [(1 / 2)*1]
log_{(1/4)}32 + log_{(10)}\sqrt{10}=[(- 1 / 2)*5*log_{(2)}2] + (1 / 2)
log_{(1/4)}32 + log_{(10)}\sqrt{10}=[(- 5 / 2)*1] + (1 / 2)
log_{(1/4)}32 + log_{(10)}\sqrt{10}=(-5/2)+(1/2)
log_{(1/4)}32 + log_{(10)}\sqrt{10}=(-5+1)/2
log_{(1/4)}32 + log_{(10)}\sqrt{10}=-4/2
log_{(1/4)}32 + log_{(10)}\sqrt{10}=-2
Perguntas interessantes