O valor de lim 3x+2/ x^2-5x+6, com x tendendo a - infinito é:
Soluções para a tarefa
Respondido por
19
Olá
___________________________________________________________
Caso não consiga visualizar, tente abrir pelo navegador:
https://brainly.com.br/tarefa/8675843
___________________________________________________________
![\displaystyle \lim_{x \to -\infty} ~ \frac{3x+2}{x^2-5x+6} ~=~ \frac{\infty}{\infty} \\ \\ \\ \text{Poe o 'x' com maior indice(grau) em evidencia} \\ \\ \\ \lim_{x \to -\infty} ~ \frac{x(3+ \frac{2}{x} )}{x^2(1- \frac{5x}{x^2} + \frac{6}{x^2} )} \\ \\ \\ \text{Simplifica} \\ \\ \\ \lim_{x \to -\infty} ~ \frac{\diagup\!\!\!\!x(3+ \frac{2}{x} )}{x^{\diagup\!\!\!\!2}(1- \frac{5\diagup\!\!\!\!\!x}{x^{\diagup\!\!\!\!2}} + \frac{6} {x^2} )} \displaystyle \lim_{x \to -\infty} ~ \frac{3x+2}{x^2-5x+6} ~=~ \frac{\infty}{\infty} \\ \\ \\ \text{Poe o 'x' com maior indice(grau) em evidencia} \\ \\ \\ \lim_{x \to -\infty} ~ \frac{x(3+ \frac{2}{x} )}{x^2(1- \frac{5x}{x^2} + \frac{6}{x^2} )} \\ \\ \\ \text{Simplifica} \\ \\ \\ \lim_{x \to -\infty} ~ \frac{\diagup\!\!\!\!x(3+ \frac{2}{x} )}{x^{\diagup\!\!\!\!2}(1- \frac{5\diagup\!\!\!\!\!x}{x^{\diagup\!\!\!\!2}} + \frac{6} {x^2} )}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Clim_%7Bx+%5Cto+-%5Cinfty%7D+%7E+%5Cfrac%7B3x%2B2%7D%7Bx%5E2-5x%2B6%7D+%7E%3D%7E+%5Cfrac%7B%5Cinfty%7D%7B%5Cinfty%7D++%5C%5C++%5C%5C++%5C%5C+%5Ctext%7BPoe+o+%27x%27+com+maior+indice%28grau%29+em+evidencia%7D+%5C%5C++%5C%5C++%5C%5C+%5Clim_%7Bx+%5Cto+-%5Cinfty%7D+%7E+%5Cfrac%7Bx%283%2B+%5Cfrac%7B2%7D%7Bx%7D+%29%7D%7Bx%5E2%281-+%5Cfrac%7B5x%7D%7Bx%5E2%7D+%2B+%5Cfrac%7B6%7D%7Bx%5E2%7D+%29%7D+%5C%5C++%5C%5C++%5C%5C+%5Ctext%7BSimplifica%7D+%5C%5C++%5C%5C++%5C%5C+%5Clim_%7Bx+%5Cto+-%5Cinfty%7D+%7E+%5Cfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21x%283%2B+%5Cfrac%7B2%7D%7Bx%7D+%29%7D%7Bx%5E%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%212%7D%281-+%5Cfrac%7B5%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21x%7D%7Bx%5E%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%212%7D%7D+%2B+%5Cfrac%7B6%7D+%7Bx%5E2%7D+%29%7D+)
![\displaystyle\lim_{x \to -\infty} ~ \frac{3+ \frac{2}{x} }{x(1- \frac{5}{x} + \frac{6}{x^2} )} \\ \\ \\ \text{Resolvendo o limite} \\ \\ \text{Pelas propriedades de limites, sabemos que } \\ \frac{k}{\pm\infty} ~=~ 0~~~~~~ ~~k\in R \\ \\ \\ \lim_{x \to -\infty} ~ \frac{3+ \frac{2}{x} }{x(1- \frac{5}{x} + \frac{6}{x^2} )}= \frac{3+0}{-\infty(1-0+0)} = \frac{3}{-\infty} =~\boxed{0} \displaystyle\lim_{x \to -\infty} ~ \frac{3+ \frac{2}{x} }{x(1- \frac{5}{x} + \frac{6}{x^2} )} \\ \\ \\ \text{Resolvendo o limite} \\ \\ \text{Pelas propriedades de limites, sabemos que } \\ \frac{k}{\pm\infty} ~=~ 0~~~~~~ ~~k\in R \\ \\ \\ \lim_{x \to -\infty} ~ \frac{3+ \frac{2}{x} }{x(1- \frac{5}{x} + \frac{6}{x^2} )}= \frac{3+0}{-\infty(1-0+0)} = \frac{3}{-\infty} =~\boxed{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx+%5Cto+-%5Cinfty%7D+%7E+%5Cfrac%7B3%2B+%5Cfrac%7B2%7D%7Bx%7D+%7D%7Bx%281-+%5Cfrac%7B5%7D%7Bx%7D+%2B+%5Cfrac%7B6%7D%7Bx%5E2%7D+%29%7D+%5C%5C++%5C%5C++%5C%5C+%5Ctext%7BResolvendo+o+limite%7D+%5C%5C++%5C%5C+%5Ctext%7BPelas+propriedades+de+limites%2C+sabemos+que+%7D++%5C%5C+%5Cfrac%7Bk%7D%7B%5Cpm%5Cinfty%7D+%7E%3D%7E+0%7E%7E%7E%7E%7E%7E+%7E%7Ek%5Cin+R+%5C%5C++%5C%5C++%5C%5C+%5Clim_%7Bx+%5Cto+-%5Cinfty%7D+%7E+%5Cfrac%7B3%2B+%5Cfrac%7B2%7D%7Bx%7D+%7D%7Bx%281-+%5Cfrac%7B5%7D%7Bx%7D+%2B+%5Cfrac%7B6%7D%7Bx%5E2%7D+%29%7D%3D+%5Cfrac%7B3%2B0%7D%7B-%5Cinfty%281-0%2B0%29%7D+%3D+%5Cfrac%7B3%7D%7B-%5Cinfty%7D+%3D%7E%5Cboxed%7B0%7D)
___________________________________________________________
Caso não consiga visualizar, tente abrir pelo navegador:
https://brainly.com.br/tarefa/8675843
___________________________________________________________
Perguntas interessantes
Informática,
11 meses atrás
Matemática,
11 meses atrás
Sociologia,
11 meses atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás