Matemática, perguntado por anacarolinadspereira, 10 meses atrás

O valor da integral ∫ \frac{3\pi }{2} \frac{\pi }{2} cos²(x) é?

a. - π

b. \frac{-\pi }{2} RESPOSTA ERRADA

c. 1

d. 0

e. \frac{\pi }{2}

Soluções para a tarefa

Respondido por CyberKirito
0

Caso tenha problemas para visualizar a resposta experimente abrir pelo navegador https://brainly.com.br/tarefa/33109732?answering=true&answeringSource=greatJob%2FquestionPage%2F2

===============================================================

\displaystyle\sf{\int_{\frac{3\pi}{2}}^{\frac{\pi}{2}}cos^2(x)~dx=\dfrac{1}{2}\int_{\frac{3\pi}{2}}^{\frac{\pi}{2}}(1+cos(2x))~dx}\\\sf{\dfrac{1}{2}x+\dfrac{1}{4}sen(2x)\Bigg|_{\frac{3\pi}{2}}^{\frac{\pi}{2}}}\\\sf{\dfrac{1}{2}\cdot\left(\dfrac{\pi}{2}\right)+\dfrac{1}{4}sen\left(\diagup\!\!\!2\cdot\dfrac{\pi}{\diagup\!\!\!2}\right)-\left[\dfrac{1}{2}\cdot\left(\dfrac{3\pi}{2}\right)+\dfrac{1}{4}sen\left(\diagup\!\!\!2\cdot\dfrac{3\pi}{\diagup\!\!\!2}\right)\right]}

\sf{\dfrac{\pi}{4}+\dfrac{1}{4}sen(\pi)-\dfrac{3\pi}{4}-\dfrac{1}{4}sen(3\pi)}\\\sf{\dfrac{\pi}{4}-\dfrac{3\pi}{4}=-\dfrac{\diagup\!\!\!\!\!\!2^1\pi}{\diagup\!\!\!4_2}=-\dfrac{\pi}{2}}

\sf{nota:~acredito~que~os~limites~de~integrac_{\!\!,}\tilde{a}o~estejam~invertidos}\\\sf{por~essa~raz\tilde{a}o~a~resposta~deu~-\dfrac{\pi}{2}}

Perguntas interessantes