Matemática, perguntado por professorasilvana, 1 ano atrás

o valor da integral
arquivo em anexo

Anexos:

Soluções para a tarefa

Respondido por ArthurPDC
0
É dada a seguinte integral definida:

\displaystyle
I=\int_{-1}^0x^2\sqrt{x^3+1}\,dx

Vamos fazer uma substituição:

u=x^3+1\Longrightarrow du=3x^2\,dx\Longrightarrow dx=\dfrac{1}{3x^2}du

Substituindo na integral dada:

\displaystyle I=\int_{-1}^0x^2\sqrt{x^3+1}\,dx\\\\
 I=\int_{u_1}^{u_2}x^2\sqrt{u}\cdot\dfrac{1}{3x^2}du\\\\
 I=\dfrac{1}{3}\int_{u_1}^{u_2}\sqrt{u}\,du\\\\
 I=\dfrac{1}{3}\int_{u_1}^{u_2}u^{\frac{1}{2}}\,du\\\\
 I=\dfrac{1}{3}\left[\dfrac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]_{u_1}^{u_2}\\\\
 I=\dfrac{1}{3}\left[\dfrac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]_{u_1}^{u_2}\\\\
 I=\dfrac{2}{9}\left[u^{\frac{3}{2}}\right]_{u_1}^{u_2}

Voltando à variável x:

I=\dfrac{2}{9}\left[u^{\frac{3}{2}}\right]_{u_1}^{u_2}\\\\
I=\dfrac{2}{9}\left[(x^3+1)^{\frac{3}{2}}\right]_{-1}^{0}\\\\
I=\dfrac{2}{9}\left[(0^3+1)^{\frac{3}{2}}-((-1)^3+1)^{\frac{3}{2}}\right]\\\\
I=\dfrac{2}{9}\left[(0+1)^{\frac{3}{2}}-(-1+1)^{\frac{3}{2}}\right]\\\\
I=\dfrac{2}{9}\left[1^{\frac{3}{2}}-0^{\frac{3}{2}}\right]\\\\
I=\dfrac{2}{9}[1-0]\\\\
I=\dfrac{2}{9}\cdot1\\\\
I=\dfrac{2}{9}\\\\
\displaystyle
\boxed{\int_{-1}^0x^2\sqrt{x^3+1}\,dx=\dfrac{2}{9}}\Longrightarrow \text{Letra }\bold{D}
Perguntas interessantes