Matemática, perguntado por delberholanda, 3 meses atrás

o valor da integral ∫³₀∫²₀ (4-y²)dy.dx é

Soluções para a tarefa

Respondido por Nasgovaskov
10

Obs.: teorema fundamental do cálculo:

\int^b_af(x)dx=F(x)\big|^b_a=F(b)-F(a).

=================================

\int^3_0\int^2_0(4-y^2)dydx=

=\int^3_0\Big[\int^2_0(4-y^2)dy\Big]dx=

=\int^3_0\Big[\int(4-y^2)dy\big|^2_0\,\Big]dx=

=\int^3_0\Big[(\int4dy-\int y^2dy)\big|^2_0\,\Big]dx=

=\int^3_0\Big[(4y-\frac{y^3}{3})\big|^2_0\,\Big]dx=

=\int^3_0\Big[(4(2)-\frac{2^3}{3})-(4(0)-\frac{0^3}{3})\big|^2_0\,\Big]dx=

=\int^3_0\Big[(8-\frac{8}{3})-(0-\frac{0}{3})\,\Big]dx=

=\int^3_0\Big[(\frac{24-8}{3})-(0-0)\,\Big]dx=

=\int^3_0\Big[\frac{16}{3}-0\,\Big]dx=

=\int^3_0(\frac{16}{3})\,dx=

=(\int\frac{16}{3}dx)\big|^3_0=

=\frac{16}{3}x\big|^3_0=

=\frac{16}{3}(3)-\frac{16}{3}(0)=

=16-\frac{0}{3}=

=16.

\underline{\boxed{\boxed{\int^3_0\int^2_0(4-y^2)dydx=16}}}\,.


RalphaOrion: Como sempre excepcional!
Perguntas interessantes