Matemática, perguntado por camposgv, 1 ano atrás

O valor da integral ʃ1e2xlnx²dx é

a) 1 + e²
b) 2e²
c) e²
d) 1
e) 0

Soluções para a tarefa

Respondido por avengercrawl
2
Olá

Alternativa correta, letra A) 1+e² 

\displaystyle  \int\limits^e_1 {2xln(x^2)} \, dx  \\  \\  \\2 \int\limits^e_1 {xln(x^2)} \, dx

Temos que resolver essa integral por partes... Dada por

\displaystyle \boxed{\mathtt{ \int udv=uv-\int vdu}}

\mathtt{u=ln(x^2)} ~~~~~ ~~~~~~~ ~~~~~~~~ ~~~~ ~~~~\mathtt{dv=x}\\ \\\mathtt{du= \frac{2x}{x^2} ~=~ \frac{2}{x} }~~~~ ~~~~~~~~~ ~~~~~ ~~~~~ \mathtt{v=\int xdx =  \frac{x^2}{2} }

Substituindo na formula

Para não ficar digitando a integral toda hora, vamos chama-la de I.


\displaystyle 2\int\limits^e_1 {xln(x^2)} \, dx ~=~I \\ \\ \\ I=2\left.\left( ln(x^2) \cdot \frac{x^2}{2}~-~\int \frac{x^2}{2} \cdot \frac{2}{x} \,\right)

Simplifica

\displaystyle I=2\left.\left( ln(x^2) \cdot \frac{x^{2}}{2}~-~\int \frac{x^{\diagup\!\!\!\!\!2}}{\diagup\!\!\!\!2} \cdot \frac{\diagup\!\!\!\!2}{\diagup\!\!\!\!\!x} \,\right)

\displaystyle I=2\left.\left( ln(x^2) \cdot \frac{x^{2}}{2}~-~\int x dx\,\right)


\displaystyle I=2\left.\left( ln(x^2) \cdot \frac{x^{2}}{2}~-~ \frac{x^2}{2} \,\right)


\displaystyle I=\diagup\!\!\!\!2\cdot ln(x^2) \cdot \frac{x^{2}}{\diagup\!\!\1\!\!2}~-~ \diagup\!\!\!\!2\cdot \frac{x^2}{\diagup\!\!\!\!2} \\ \\ \\ \boxed{I=ln(x^2)\cdot x^2~-~x^2}

=\left.\left(\dfrac{}{}\,\mathrm{ln(x^2)-x^2}\right)\right|_{1}^{e} \\  \\  \\ =\underbrace{(\mathsf{e^2\cdot ln(e^2)})}_{=2e^2}~-~e^2)~-~(\underbrace{(\mathsf{1^2\cdot ln(1^2)})}_{=0}~-~1) \\  \\  \\ =(2e^2-e^2)~-~(0-1) \\  \\ =\boxed{e^2+1}~~~~~ ~~~~~\longleftarrow \text{Resposta}





Perguntas interessantes