O valor da expressão √8+√14+3√6+√4
Soluções para a tarefa
Resposta:
2
1
=
2
1
×
2
2
=
(
2
)
2
2
=
2
2
\dfrac{6}{\sqrt{10}} = \dfrac{6}{\sqrt{10}} \times \dfrac{\sqrt{10}}{\sqrt{10}} = \dfrac{6\sqrt{10}}{(\sqrt{10})^2} = \dfrac{6\sqrt{10}}{10} = \dfrac{3\sqrt{10}}{5}
10
6
=
10
6
×
10
10
=
(
10
)
2
6
10
=
10
6
10
=
5
3
10
\dfrac{\sqrt{6}}{\sqrt{12}} = \dfrac{\sqrt{6}}{\sqrt{12}} \times \dfrac{\sqrt{12}}{\sqrt{12}} = \dfrac{\sqrt{72}}{(\sqrt{12})^2} = \dfrac{6\sqrt{2}}{12} = \dfrac{\sqrt{2}}{2}
12
6
=
12
6
×
12
12
=
(
12
)
2
72
=
12
6
2
=
2
2
\dfrac{2\sqrt{2}}{\sqrt{20}} = \dfrac{2\sqrt{2}}{\sqrt{20}} \times \dfrac{\sqrt{20}}{\sqrt{20}} = \dfrac{2\sqrt{40}}{(\sqrt{20})^2} = \dfrac{4\sqrt{10}}{20} = \dfrac{\sqrt{10}}{5}
20
2
2
=
20
2
2
×
20
20
=
(
20
)
2
2
40
=
v20
v4
b
v10
=
v5
v10
\dfrac{3\sqrt{2}}{\sqrt{2} + \sqrt{3}} = \dfrac{3\sqrt{2}}{\sqrt{2} + \sqrt{3}} \times \dfrac{\sqrt{2} - \sqrt{3}}{\sqrt{2} - \sqrt{3}} = \dfrac{6-3\sqrt{6}}{2-3} = v3\sqrt{6} -6
v2
+
v3
v3
v2
=
Resposta:
15,91855373
Explicação passo-a-passo:
√8+√14+3√6+√4 = 15,91855373
Espero ter ajudado