Matemática, perguntado por kayallap, 1 ano atrás

O  \lim_{x \to -\infty} (x +  \sqrt{x^2 + 3x + 2}) é igual a - \frac{3}{2} . Qual é o desenvolvimento dessa questão? Como eu faço?


Lukyo: lim x->-inf (x + sqrt(x^2 + 3x + 2))
lim x->-inf (x + √(x^2 + 3x + 2))
lim x->-∞ (x + sqrt(x^2 + 3x + 2))
lim x->-∞ (x + √(x^2 + 3x + 2))

Soluções para a tarefa

Respondido por Lukyo
0
L=\underset{x\to -\infty}{\mathrm{\ell im}}~\big(x+\sqrt{x^2+3x+2}\big)\\\\\\ =\underset{x\to -\infty}{\mathrm{\ell im}}~\big(x+\sqrt{x^2+3x+2}\big)\cdot \dfrac{x-\sqrt{x^2+3x+2}}{x-\sqrt{x^2+3x+2}}\\\\\\ =\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{\big(x+\sqrt{x^2+3x+2}\big)\cdot \big(x-\sqrt{x^2+3x+2}\big)}{x-\sqrt{x^2+3x+2}}\\\\\\ =\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{x^2-\big(\sqrt{x^2+3x+2}\big)^2}{x-\sqrt{x^2+3x+2}}

=\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{x^2-(x^2+3x+2)}{x-\sqrt{x^2+3x+2}}\\\\\\ =\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{x^2-x^2-3x-2}{x-\sqrt{x^2+3x+2}}\\\\\\ =\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{-3x-2}{x-\sqrt{x^2+3x+2}}\\\\\\ =\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{-3x-2}{x-\sqrt{x^2\cdot \left(1+\frac{3}{x}+\frac{2}{x^2} \right )}}\\\\\\ =\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{-3x-2}{x-\sqrt{x^2}\cdot\sqrt{1+\frac{3}{x}+\frac{2}{x^2}}}

=\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{-3x-2}{x-|x|\cdot\sqrt{1+\frac{3}{x}+\frac{2}{x^2}}}~~~~~~\mathbf{(i)}


Mas quando x\to -\infty, temos x<0. Portanto,

|x|=-x


Então o limite \mathbf{(i)} fica

=\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{-3x-2}{x-(-x)\cdot\sqrt{1+\frac{3}{x}+\frac{2}{x^2}}}\\\\\\ =\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{-3x-2}{x+x\cdot\sqrt{1+\frac{3}{x}+\frac{2}{x^2}}}\\\\\\ =\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{\diagup\!\!\!\! x\cdot \left(-3-\frac{2}{x} \right )}{\diagup\!\!\!\! x\cdot \left(1+\sqrt{1+\frac{3}{x}+\frac{2}{x^2}} \right )}\\\\\\ =\underset{x\to -\infty}{\mathrm{\ell im}}~\dfrac{-3-\frac{2}{x}}{1+\sqrt{1+\frac{3}{x}+\frac{2}{x^2}}}\\\\ \vdots\\\\ =\dfrac{-3+0}{1+\sqrt{1+0+0}}\\\\\\ =\dfrac{-3}{1+\sqrt{1}}\\\\\\ =\dfrac{-3}{1+1}\\\\\\ =-\,\dfrac{3}{2}


\therefore~~\boxed{\begin{array}{c} \underset{x\to -\infty}{\mathrm{\ell im}}~\big(x+\sqrt{x^2+3x+2}\big)=-\,\dfrac{3}{2}\end{array}}


Bons estudos! :-)


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6240644
kayallap: Muito obrigada!!!
Lukyo: Por nada! :-)
Respondido por pernia
0
Ola'  \\  \\ \lim_{x\to -\infty}~x+ \sqrt{ x^{2} +3x+2} ~~--\ \textgreater \  se~substituirmos -\infty~seria~ \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~indeterminado  \\ Ent\~ao~fazendo:\\ \lim_{x\to-\infty}~ \frac{(x+ \sqrt{ x^{2} +3x+2}) (x- \sqrt{x\²+3x+2}) }{x- \sqrt{x\²+3x+2} } ~~--\ \textgreater \ deselvolvendo \\  \\ \lim_{x\to-\infty} \frac{x\²-( \sqrt{x\²+3x+2})\² }{x- \sqrt{x\²+3x+2} }  \\  \\ \lim_{x\to-\infty}~ \frac{-3x-2}{x- \sqrt{x\²+3x+2} }~~--\ \textgreater \ cambiamos~sinal~de~-\infty ~a~+~\infty \\  \\

\lim_{x\to\infty} \frac{+3x-2}{-x- \underbrace{\sqrt{x\²-3x-2}}_{x} }  \\  \\ \lim_{x\to\infty}  \frac{3x-2}{-2x}  \\  \\ \lim_{x\to\infty} \frac{\not x(3- \frac{2}{x}) }{-2\not x}  \\  \\ \lim_{x\to\infty} \frac{3- \frac{2}{x} }{-2}   \\  \\  \frac{3- \frac{2}{\infty} }{-2}  \\  \\ \boxed{- \frac{3}{2}}} \\  \\  \\ \mathbb{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Espero~ter~ajudado!!

kayallap: Só não entendi por que a raiz do denominador virou x. Mas já havia entendido com a resposta anterior! Obrigada da mesma forma!!! :)
pernia: é um truque que se faz na espanha amiga rsrsr
pernia: são definiciones e condiciones sabendo isso vc só faz x
Perguntas interessantes