Matemática, perguntado por samanthamiranda4601, 1 ano atrás

o termo central do desenvolvimento do binômio de Newton de x mais 2 elevado a 6 é

Soluções para a tarefa

Respondido por auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{(x + 2)^6}

\mathsf{T_{\:p + 1} = \binom{n}{p}\:.\:A^{n - p}\:.\:B^p}

\mathsf{p + 1 = \dfrac{n}{2} + 1}

\mathsf{p + 1 = \dfrac{6}{2} + 1}

\mathsf{p + 1 = 3 + 1}

\mathsf{p = 3}

\mathsf{T_{4} = \binom{6}{3}\:.\:x^{\:6 - 3}\:.\:2^3}

\mathsf{T_{4} = \dfrac{6!}{3!.(6 - 3)!}\:.\:x^{3}\:.\:8}

\mathsf{T_{4} = \dfrac{\not6.5.4\not3!}{\not3!.\not3!}\:.\:8x^{3}}

\mathsf{T_{4} = 20\:.\:8x^{3}}

\boxed{\boxed{\mathsf{T_{4} = 160x^3}}}

Perguntas interessantes