ENEM, perguntado por Millapaim5677, 6 meses atrás

O rotacional do campo vetorial f(x, y, z) =(x² + z, y - xy, z + xyz) é dado por:.

Soluções para a tarefa

Respondido por italloloks
1

Resposta:

Rot F = <xz, 1 - yz, -y>

Na foto eu relembo como se calcula um rotacional, logo em seguida eu acabo calculando. Qualquer dúvida estou à disposição

Anexos:
Respondido por solkarped
2

✅ Após resolver os cálculos, concluímos que o rotacional do referido campo vetorial é:

          \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\textrm{rot}\:\vec{F} = xz\,\vec{i} - (yz - 1)\,\vec{j} - y\,\vec{k}\:\:\:}}\end{gathered}$}

   

Seja a função:

          \Large\displaystyle\text{$\begin{gathered} F(x, y, z) = (x^{2} + z,\,y - xy,\,z + xyz)\end{gathered}$}

Organizando o campo vetorial, temos:

 \Large\displaystyle\text{$\begin{gathered} \vec{F}(x, y, z) = (x^{2} + z)\vec{i} + (y - xy)\vec{j} + (z + xyz)\vec{k}\end{gathered}$}

Sendo F um campo vetorial em R³, podemos dizer que o rotacional de F - denotado por "rot F" - é o produto vetorial entre o operador diferencial e F, isto é:

    \Large\displaystyle\text{$\begin{gathered} \textrm{rot}\:\vec{F} = \nabla\wedge\vec{F}\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \bigg(\frac{\partial}{\partial x},\,\frac{\partial}{\partial y},\,\frac{\partial}{\partial z}\bigg) \wedge(X_{F}\vec{i},\,Y_{F}\vec{j},\,Z_{F}\vec{k})\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \begin{vmatrix} \vec{i} &amp; \vec{j} &amp; \vec{k}\\\frac{\partial}{\partial x} &amp; \frac{\partial}{\partial y} &amp; \frac{\partial}{\partial z}\\X_{F} &amp; Y_{F} &amp; Z_{F}\end{vmatrix}\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} = \begin{vmatrix}\frac{\partial}{\partial y} &amp; \frac{\partial}{\partial z} \\Y_{F} &amp; Z_{F}\end{vmatrix}\vec{i} - \begin{vmatrix}\frac{\partial}{\partial x} &amp; \frac{\partial}{\partial z} \\X_{F} &amp; Z_{F}\end{vmatrix}\vec{j} + \begin{vmatrix} \frac{\partial}{\partial x} &amp; \frac{\partial}{\partial y}\\X_{F} &amp; Y_{F}\end{vmatrix}\vec{k}\end{gathered}$}

                \large\displaystyle\text{$\begin{gathered} = \left(\frac{\partial Z_{F}}{\partial y} - \frac{\partial Y_{F}}{\partial z}\right)\vec{i} - \left(\frac{\partial Z_{F}}{\partial x} - \frac{\partial X_{F}}{\partial z}\right)\vec{j} + \left(\frac{\partial Y_{F}}{\partial x} - \frac{\partial X_{F}}{\partial y}\right)\vec{k}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} = (xz - 0)\vec{i} - (yz - 1)\vec{j} + (-y - 0)\vec{k}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} = xz\,\vec{i} - (yz - 1)\,\vec{j} - y\,\vec{k}\end{gathered}$}      

✅ Portanto, a resposta é:

       \Large\displaystyle\text{$\begin{gathered} \textrm{rot}\:\vec{F} = xz\,\vec{i} - (yz - 1)\,\vec{j} - y\,\vec{k}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/52158446
  2. https://brainly.com.br/tarefa/1295497
  3. https://brainly.com.br/tarefa/38763398
  4. https://brainly.com.br/tarefa/1330762
  5. https://brainly.com.br/tarefa/19808046
  6. https://brainly.com.br/tarefa/18700455
  7. https://brainly.com.br/tarefa/36728251
  8. https://brainly.com.br/tarefa/50493632
Anexos:
Perguntas interessantes