Matemática, perguntado por Patiiii, 1 ano atrás

O resultado da integral é:

Anexos:

Soluções para a tarefa

Respondido por jvitor20
2
∫3√3x+7 dx = 3 ∫√3x+7 dx = 3 ∫1/3 √u du = 3/3 ∫u^(1/2) = 2/3 u^(3/2) 
∫3√3x+7 dx = 2/3 (3x+7)^(3/2) = 2/3 √(3x+7)³

u=3x+7
du=3dx
du/3=dx

Para -2≤x≤2 ⇒ 2/3 (√(6+7)³ - √(-6+7)³)= 2/3 (√(13)³ - √(1)³) = 2/3 (13√13 - √1)

∫3√3x+7 dx = 2/3 √(3x+7)³ = 2/3 (13√13 - 1) quando -2≤x≤2


jvitor20: √u = u^1/2 e integral u^(1/2) = u^(1/2+1)/(1/2+1) = u^(3/2)/(3/2) = 2/3 u^(3/2)
jvitor20: u^(3/2) = √u³
jvitor20: (3(2)+7) = (6+7) = 13 e (3(-2)+7) = (-6+7) = 1
jvitor20: √(13)³ = √13x13x13 = √(13)²x13 = 13√13
jvitor20: √(1)³ = √1 = 1
jvitor20: Espero ter sido claro
Patiiii: Foi, muito Obrigada
Perguntas interessantes