Matemática, perguntado por diegomaciel89, 7 meses atrás

o resultado da equação: x² + 8x + 12 = 0 *

-2 , -6

8, 1

6, 8

3, 4

Soluções para a tarefa

Respondido por SapphireAmethyst
5

Bonjour Monsieur

  • A sua questão fala sobre Equação de Segundo Grau (Fórmula de Bhaskara)
  • Já adiantando que a resposta correta é a letra A

Informações Importantes:

Para resolver essa questão, primeiramente iremos descobrir o discriminante (∆), cuja a fórmula é:

 \sf{ \Delta = b {}^{2}  - 4 \times a \times c}

Depois de descoberto o delta utilizaremos a fórmula de Bhaskara

 \sf \: x =  \frac{ - b \pm \sqrt{ \Delta} }{2 \times a}  \\

  • Dados:

 \begin{cases}  \sf a = 1 \\  \sf b = 8 \\  \sf c = 12 \end{cases}

  • Voltando para sua questão...

Temos a seguinte Equação:

 \sf \: x {}^{2}  + 8x + 12 = 0

Aplicando delta teremos:

 \sf  \Delta = 8 {}^{2}  - 4 \times 1 \times 12 \\  \sf \Delta = 64 - 4 \times 1 \times 12 \\  \sf \Delta = 64 - 48 \\  \sf \Delta = 16

Depois de descoberto o valor do discriminante iremos finalizar fazendo a fórmula de Bhaskara:

 \sf \: x =  \frac{ -8 \pm \sqrt{16} }{2 \times 1}  \\ \sf \: x =  \frac{ - 8  \pm 4}{2 } \\   \red{\sf \: x_1 =  \frac{ - 8 + 4}{2} } \\ \red{\sf \: x_1 =  \frac{ - 4}{2} } \\  \boxed{ \red{ \sf{x_1 =  - 2}}} \\ \purple{\sf \: x_2 =  \frac{ - 8  - 4}{2} } \\ \purple{\sf \: x_2 =  \frac{  - 12}{2} } \\  \boxed{ \purple{\sf \: x_2  = - 6 }}

Espero ter ajudado!

Para saber mais sobre Equação de Segundo Grau acesse:

https://brainly.com.br/tarefa/42945467

https://brainly.com.br/tarefa/43980135

Perguntas interessantes