Matemática, perguntado por igorpertillicombr, 9 meses atrás

O que são grandezas inversamente proporcionais

Soluções para a tarefa

Respondido por thamiressilvia
1

Explicação passo-a-passo:

Duas grandezas são chamadas de inversamente proporcionais quando um aumento na medida de uma delas faz com que a medida da outra seja reduzida na mesma proporção. Em outras palavras, dadas as grandezas A e B, se houver aumento na medida da grandeza A, ocorre a diminuição da medida da grandeza B, então elas são inversamente proporcionais.

Exemplo: um automóvel move-se a 40 km/h e demora cerca de 5 horas para chegar ao seu destino. Se esse automóvel estivesse a 80 km/h, ele demoraria duas horas e meia para chegar ao seu destino.

Observe que dobrar a velocidade implica em gastar metade do tempo para chegar, ou seja, um aumento na velocidade faz com que o tempo gasto no percurso diminua. Assim, as grandezas velocidade e tempo são inversamente proporcionais. Além disso, a proporção de variação nas medidas das grandezas é a mesma.

Regra de três

A regra de três é uma das ferramentas que podem ser usadas para determinar uma das medidas de uma proporção quando são conhecidas apenas três medidas. Nesse caso, monta-se a proporção usando as medidas disponíveis e aplica-se a propriedade fundamental das proporções. Entretanto, para as grandezas inversamente proporcionais, é preciso dar um passo a mais: antes de aplicar a propriedade fundamental das proporções, é necessário inverter uma das razões.

Exemplo: um automóvel desloca-se a 60 km/h e demora 3 horas para chegar a seu destino. Se esse mesmo automóvel estivesse a 90 km/h, quanto tempo levaria para completar esse mesmo percurso?

A proporção construída a partir dessa situação é:

60 = 3

90 x

Essas grandezas são inversamente proporcionais, pois, aumentando a velocidade, gastaremos menos tempo em um mesmo percurso. Portanto, inverteremos uma das equações:

90 = 3

60 x

Agora, basta aplicar a propriedade fundamental das proporções e resolver a equação resultante:

90x = 3·60

80x = 180

x = 180

90

x = 2

Serão gastas duas horas a 90 km/h.

Perguntas interessantes