Matemática, perguntado por pasesilvio, 1 ano atrás

O que caracteriza um número racional?

Soluções para a tarefa

Respondido por Vimedeiros00
5

Todo número que puder ser escrito como uma fração onde o seu numerador é um número inteiro e o seu denominador é um inteiro diferente de zero é um Número Racional.

O conjunto numérico dos racionais é designado pela letra `\QQ`, para lembrar de "quociente".

`\QQ = { a \in \ZZ \text{ e } b \in \ZZ^* | a/b }`

Obs.

`\ZZ = { ..., -2, -1, 0, 1, 2, ...}` e `\ZZ^* = { ..., -2, -1, 1, 2, ...}` (o zero é excluído)

 

Exemplos.

`3` pode ser escrito na forma de quociente de inteiros. Um exemplo: `3= 3/1`, logo `3` é Racional.`2/5` já é um quociente entre inteiros, logo `2/5` é um Racional.

Cardicas:

Toda Dízima Periódica é um número Racional.Toda Dízima Finita é um número Racional.Nenhuma Dízima Infinita e não Periódica é Racional. São exemplos clássicos `\pi` (Constante de Arquimedes, `\pi= 3, 1415...`), `\phi` (Número de Ouro, `\phi = 1,618 ...`) ou e (Constante de Euler. `e = 2,71 ... `)Todo número Inteiro é Racional.Todo número Natural é Racional.Todo número Real que não é Racional é chamado de Irracional.

pasesilvio: muito obrigado!!
Perguntas interessantes