Matemática, perguntado por jademelo, 10 meses atrás

O primeiro termo de uma P. A. de razão 4 é 30. Sabendo que o último termo desta sequência é o 70, marque a opção que registra o cálculo correto para encontrar o número de termos (n) desta P. A. *

a) n = (70 + 30)/4
b) n = (70 - 30)/4 +1
c) n = (70 + 30) + 1/4
d) n = (70 - 30) + 1

Soluções para a tarefa

Respondido por Usuário anônimo
1

Resposta:

b) n = (70 - 30)/4 +1

Explicação passo-a-passo:

a1=30

r=4

an=70

n=?

Fórmula:an=a1+(n-1).r

70=30+(n-1).4

70=30+4n-4

70=26+4n

70-26=4n

44/4=n

n=11

P.A=(30,34,38,42,46,50,54,58,62,66,70)

Devia ter alguma alternativa assim:70=30+(n-1).4,não entendo porque disponibilizaram alternativas assim,enfim a única alternativa que da o número de termos correto desta P.A é a b)

b)n = (70 - 30)/4+1

70-30=40

40/4=10

10+1=11

n=11

Vamos ver o resultado final das outras alternativas:

a)n = (70 + 30)/4

70+30=100

100/4=25

c)n = (70 + 30)+1/4

70+30=100

100+1/4=100,25

1/4=0,25

d)n = (70 - 30)+1

70-30=40

40+1=41

Perguntas interessantes